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Introduction

When solving any mathematical problem, it is natural to want to simplify
the problem statement as much as possible in advance. However, in some cases,
the solution method may consist of its generalization or even complication.

One of the methods of this class is parameterization of the problem condition,
that is, changing its condition by introducing parameters into it in some way.

Let us first clarify the meaning of the concepts used below.
Within the framework of this manual, by parameter we will mean a mathe-

matical object that is a constant in the problem being solved, the value of which
is an element from a certain set.

Let us give an obvious example. The problem find real solutions to the
equation 𝑥2 − 6𝑥 − 5 = 0 is parametrically generalized to the form find real
solutions to the equation 𝑎𝑥2 + 𝑏𝑥+ 𝑐 = 0, where 𝑎, 𝑏, 𝑐 ∈ R.

It is clear that if we are interested in the roots of only the original equation,
then such a complication of the condition is hardly advisable.

Let’s consider another example. Let it be required to find the maximum
among the numbers 𝑥1 = 4, 𝑥2 = −5, 𝑥3 = 0. Using a complete enumeration
obviously gives its solution 𝑥𝑚𝑎𝑥 = 4. However, it can be obtained (estimate the
error on a calculator, for example, at 𝜏 = 0.1) by the formula

𝑥𝑚𝑎𝑥 = lim
𝜏→+0

𝜏 ln
(︁
𝑒

𝑥1
𝜏 + 𝑒

𝑥2
𝜏 + 𝑒

𝑥3
𝜏

)︁
.

This formula uses an auxiliary positive parameter 𝜏 , by which the limit transition
to zero is performed. This formula is, of course, more complicated than the pro-
gram for enumerating answer options, but it does not require logical operations
of the type «if..., then..., otherwise...»

From the examples given, we can conclude that there are at least two types
of parameters:

— exogenous, describing the external «information environment» of the task,
and

— instrumental, not affecting the answer, but necessary for the implemen-
tation of the solution search algorithm.
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In the examples given, the first type can include the coefficients of a quadratic
equation or the values of numbers, among which the maximum is sought. The
second type includes the auxiliary parameter 𝜏 .

Let’s consider another example.

Find the value of the Dirichlet integral

𝐼(𝛼) =

+∞∫︁
0

sin𝛼𝑥

𝑥
𝑑𝑥,

where 𝛼 is an arbitrary real exogenous parameter.

It is impossible to calculate this integral using the Newton-Leibniz formula
since the indefinite integral

∫︀
sin𝛼𝑥

𝑥
𝑑𝑥 «not taken», i.e. not represented as

some superposition of elementary functions.
However, according to the Dirichlet criterion, this integral converges, i.e.

𝐼(𝛼) has a finite value ∀𝛼 ∈ R.

This value can be found by constructing an auxiliary integral

Φ(𝛼, 𝛽) =

+∞∫︁
0

𝑒−𝛽𝑥 sin𝛼𝑥

𝑥
𝑑𝑥,

introducing a real instrumental parameter 𝛽 ∈ [0, 1].
This integral converges for 𝛼 ̸= 0 by the Dirichlet criterion for any fixed

𝛽 > 0. For 𝛼 = 0 it is identically equal to zero.
In this case, the integral of derivative of the integrand with respect to 𝛼

+∞∫︁
0

𝑒−𝛽𝑥 cos𝛼𝑥𝑑𝑥

will converge by the Weierstrass criterion uniformly on the set 𝛽 ∈ (0, 1] and
moreover (this is a theorem!) specifically to Φ′

𝛼(𝛼, 𝛽).
In addition, it turns out that the last integral «is taken» by double integration

«by parts» and, according to the Newton-Leibniz formula, is equal to (check this

yourself)
𝛽

𝛼2 + 𝛽2
.

We have Φ(0, 𝛽) = 0. Then, integrating at a constant value of 𝛽

Φ′
𝛼(𝛼, 𝛽) =

𝛽

𝛼2 + 𝛽2

over the variable 𝛼 , we obtain Φ(𝛼, 𝛽) = arctg
𝛼

𝛽
.
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Finally, passing in the last formula to the limit 𝛽 → +0 for a fixed 𝛼 > 0, we
obtain

𝐼(𝛼) = lim
𝛽→+0

Φ(𝛼, 𝛽) =
𝜋

2
.

And, due to the oddness of the sine, for any 𝛼 we have 𝐼(𝛼) =
𝜋

2
sgn𝛼 .

Here it is worth noting that the parameter 𝛼 in this problem is exogenous,
and the parameter 𝛽 is instrumental.

Thus, based on the examples considered, we can conclude that, although
parameterization leads to a formal complication of the problem, the additional
degrees of freedom that arise can be used

— both for analyzing the properties of solutions and searching for solutions
with special properties,

— and for constructing alternative algorithms for searching for the solutions
themselves.

Further in this manual, methods for solving various types of problems based
on the parameterization of the description of second-order lines on a plane are
considered.

This method is based on the fact that any linear combination of second-order
line equations is a line equation of order no higher than 2.

If the desired second-order line must satisfy a certain set of conditions (for
example, pass through a given set of points), then it can be assumed that
parametrization of a set of such lines will simplify both the formulation of the
problem being solved and the method for solving it. For example, for some
values of the parameters a linear combination may turn out to be a first-order
equation. The reader can find descriptions of the implementation of this idea,
for example, in [1,2].

This manual further discusses the conditions for the applicability of this
approach and provides examples of solving specific problems.
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Parametric sets of second-order lines on the
plane

Canonical classification
of second-order lines on the plane

Second-order lines on the plane are considered in the Cartesian coordinate
system, which by default we will consider orthonormal { 𝑂, 𝑒⃗1, 𝑒⃗2 } and we give

Definition
1

If the line 𝐿 is an algebraic line of the 2nd order, then
its equation in the given coordinate system has the form

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥+ 2𝐸𝑦 + 𝐹 = 0 , (1)

where the numbers 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are any real
numbers, and |𝐴| + |𝐵| + |𝐶| ≠ 0, and 𝑥 and 𝑦 are the
coordinates of the radius vector of any point belonging
to 𝐿.

It is obvious that the coefficients of equation (1) for a specific second-order
line change when moving from one ONSC to another. Therefore, when studying
the properties of these lines, it is advisable to first move to the coordinate system{︁
𝑂′, 𝑒′1, 𝑒′2

}︁
, in which the form of the equation of the line turns out to be the

simplest.

In the course of analytical geometry, it is proved

Theorem 1 For any second-order line, there exists an orthonormal
coordinate system in which the equation of this line (for
𝑎 > 0, 𝑏 > 0, 𝑝 > 0) has one of the following nine (called
standard) forms:
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T a b l e 1

Line type →

↓ Line type

Elliptic

Δ > 0

Hyperbolic

Δ < 0

Parabolic

Δ = 0

Empty sets
𝑥′2

𝑎2
+

𝑦′2

𝑏2
= −1 𝑦′2 = −𝑎2 ∀𝑥′

Isolated points
𝑥′2

𝑎2
+

𝑦′2

𝑏2
= 0

Coincident lines 𝑦′2 = 0 ∀𝑥′

Non-coincident
lines

𝑥′2

𝑎2
−

𝑦′2

𝑏2
= 0 𝑦′2 = 𝑎2 ∀𝑥′

Curves Ellipse

𝑥′2

𝑎2
+

𝑦′2

𝑏2
= 1

Hyperbole

𝑥′2

𝑎2
−

𝑦′2

𝑏2
= 1

Parabola

𝑦′2 = 2𝑝𝑥′

where

Δ = det

⃦⃦⃦⃦
𝐴 𝐵
𝐵 𝐶

⃦⃦⃦⃦
= 𝐴𝐶 −𝐵2. (2)

We also require that for the standard equation ellipse 𝑎 ≥ 𝑏 holds.

To simplify subsequent discussions, we will present this classification as fol-
lows:
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T a b l e 2

Line type →

↓ Cases

Elliptic

Δ > 0

Hyperbolic

Δ < 0

Parabolic

Δ = 0

Non-degenerate Ellipse,

imaginary ellipse

𝑥′2

𝑎2
+

𝑦′2

𝑏2
= ±1

Hyperbola

𝑥′2

𝑎2
−

𝑦′2

𝑏2
= 1

Parabola

𝑦′2 = 2𝑝𝑥′

Degenerate

Imaginary Lines

𝑥′2

𝑎2
+

𝑦′2

𝑏2
= 0 𝑦′2 = −𝑎2 ∀𝑥′

Coincident
straight lines

𝑦′2 = 0 ∀𝑥′

Non-coincident
straight lines

𝑥′2

𝑎2
−

𝑦′2

𝑏2
= 0 𝑦′2 = 𝑎2 ∀𝑥′

Note also that all degenerate lines are a pair of real or imaginary lines.

Tables 1 and 2 allow to classify the second-order lines by their standard equa-
tions. The proof of Theorem 1, as well as an alternative scheme of parametric
classification of the second-order lines defined in the polar coordinate system,
can be found, for example, in [3].

From Table 2 it follows, which can be verified directly,
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Theorem 2 For the degeneracy of the second-order line described
in Definition 1, it is necessary and sufficient that

det

⃦⃦⃦⃦
⃦⃦ 𝐴 𝐵 𝐷

𝐵 𝐶 𝐸
𝐷 𝐸 𝐹

⃦⃦⃦⃦
⃦⃦ = 0 .

Now let’s look at some examples of constructing parametric sets of 2nd order
lines.

1) If in equation (1) the coefficient 𝐹 is taken as a parameter, then such
a parametric set will describe the projections of the sections of the
surface with the equation Φ(𝑥, 𝑦, 𝑧) = 0 of the form

𝐴𝑥2 + 2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥+ 2𝐸𝑦 + 𝑧 = 0 ,

planes 𝑧 = 𝐹 on the coordinate plane 𝑂𝑥𝑦 parallel to the applicate
axis.

2) A parametric set with parameter 𝜆 of the form

(𝐴− 𝜆)𝑥2 + 2𝐵𝑥𝑦 + (𝐶 − 𝜆)𝑦2 + 2𝐷𝑥+ 2𝐸𝑦 + 𝐹 = 0

consists of 2nd-order lines with symmetry axes parallel to each other.

This obviously follows from the formula ctg 2𝜙 =
𝐴− 𝐶

2𝐵
, where 𝜙

is the rotation angle necessary to transform the original rectangular
coordinate system into the standard one.

3) Let 𝐺𝑘(𝑥, 𝑦) = 0 𝑘 = 1, 𝑛 — equations of 2nd order lines of the form
(1) having 𝑚 common points. Then the equation

𝐺(𝑥, 𝑦) =
𝑛∑︁

𝑘=1

𝜆𝑘𝐺𝑘(𝑥, 𝑦) = 0

also describes a line passing through these 𝑚 points, where 𝜆𝑘 𝑘 =
1, 𝑛 are not equal to zero simultaneously, real parameters.

Of course, this list is far from exhaustive. Let us just note that the subject
of our further consideration will be precisely case 3).

Let us consider example 3) in more detail in the context of the problem of
finding the equation of a 2nd order line passing through a set of given points of
the plane.
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Since in this problem equation (1) has six coefficients to be determined, of
which at least one of 𝐴,𝐵 or 𝐶 must be nonzero, it is clear that for 𝑛 ≤ 5 this
problem may have more than one solution, and for the number of points greater
than five — it may be unsolvable.

To obtain conditions for the unique solvability of this problem, we will use
well-known theorems from the theory of systems of linear equations.

It is easy to see that in the problem under consideration the coefficients of
equation (1) must satisfy the following system of linear equations

⃦⃦⃦⃦
⃦⃦⃦⃦ 𝑥2

1 2𝑥1𝑦1 𝑦2
1 2𝑥1 2𝑦1 1

𝑥2
2 2𝑥2𝑦2 𝑦2

2 2𝑥2 2𝑦2 1
· · · · · · · · · · · · · · · · · ·
𝑥2
𝑛 2𝑥𝑛𝑦𝑛 𝑦2

𝑛 2𝑥𝑛 2𝑦𝑛 1

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦ =

⃦⃦⃦⃦
⃦⃦⃦⃦ 0

0
· · ·
0

⃦⃦⃦⃦
⃦⃦⃦⃦ , (3)

where {𝑥𝑘; 𝑦𝑘} 𝑘 = 1, 𝑛 — coordinates of given (different!) points.

It is clear that we will be interested only in non-trivial solutions of equa-
tion (3).

Important: system (3), in which the unknowns are the coefficients of equation
(1), always has a zero solution (called for brevity trivial). Equa-
tion (1), whose coefficients are equal to zero, is the equation of
the entire coordinate plane 𝑂𝑥𝑦, and not of a second-order line.

The set of all particular solutions of the homogeneous system (3), as is known
from the course of linear algebra, is a finite-dimensional subspace, whose dimen-
sion is equal to the rank of the fundamental matrix of this system.

Obviously, the bijection between the set of equations (1) and the set of 6-
component columns of the form

‖𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ‖T .

is an isomorphism between these sets.

Important : equations with proportional coefficients obviously define the same
2nd order line.

Consider the following auxiliary lemmas. Their proofs are given in Appendix 1.
Prove Lemma 4 yourself.

Lemma 1 Through any five points of the plane one can draw a
second-order line.
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Lemma 2 Through any five non-coincident points of the plane,
four of which lie on the same line, one can draw in-
finitely many second-order lines.

Lemma 3 Through any five non-coinciding points of the plane,
three of which belong to the same line, and any four
do not lie on the same line, it is possible to draw a
2nd-order line, and only one.

Lemma 4 The 𝑛-th equation of system (3) is a linear combination
of the first 𝑛 − 1 equations if and only if any second-
order line passing through the points with coordinates
{𝑥1, 𝑦1}, {𝑥2, 𝑦2} . . . {𝑥𝑛−1, 𝑦𝑛−1} passes through the point
with coordinates {𝑥𝑛, 𝑦𝑛}.

Hint: the statement of Lemma 4 obviously follows from the fact that,
if system (3) contains a dependent equation, then when it is
"crossed out", the resulting system is equivalent to the original
one.

Lemma 5 For 1 < 𝑛 < 4, system (3) does not have linearly depen-
dent equations if all points are distinct.

Lemma 6 For 4 ≤ 𝑛 ≤ 5, system (3) has linearly dependent equa-
tions if and only if at least four distinct points lie on
one straight line.

Now we formulate a generalization of Lemma 1.

Theorem 3 Through any five non-coinciding points of the plane, any
four of which do not lie on the same line, it is possible
to draw a line of the 2nd order and only one.

The proof of Theorem 3 is given in Appendix 1.

We also give
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Definition
2

The set all lines of the 2nd order passing through a given
set of 𝑛 points, any four of which do not belong to the
same line, will be called an 𝑛- point bundle.
For some subset of lines in the bundle, defined in some
way, we will use the term set of lines.

It follows from Theorem 3 that a 5-point bundle always consists of only one
line, while a 6- or more-point bundle may be empty.

For illustration, consider the following example:

𝐺1(𝑥, 𝑦) = 𝑥2 = 0 ;
𝐺2(𝑥, 𝑦) = 𝑦2 = 0 ;
𝐺(𝑥, 𝑦) = 𝛼𝑥2 + 𝛽𝑦2 = 0, 𝛼2 + 𝛽2 > 0 .

It is clear that the lines 𝐺1(𝑥, 𝑦) = 0 and 𝐺2(𝑥, 𝑦) = 0 belong to a one-point
bundle of lines passing through the origin. At the same time, the parametric
set generated by them does not coincide with this bundle. Indeed, the parabola
𝑥2 + 𝑦 = 0 belongs to the bundle, but is not included in the set.

For further discussions it will be useful to We will clarify the concept of a set
of 2nd order lines, giving

Definition
3

Let a set consisting of 𝑛 2nd order lines be given
𝐺𝑘(𝑥, 𝑦) = 0 𝑘 = 1, 𝑛. The set of second-order lines,
whose equation has the form

𝑛∑︁
𝑘=1

𝜆𝑘𝐺𝑘(𝑥, 𝑦) = 0, (4)

where 𝜆𝑘 ∈ R 𝑘 = 1, 𝑛 , is called the 𝑛-parametricset
of second-order lines generated by the set 𝐺𝑘(𝑥, 𝑦) =
0 𝑘 = 1, 𝑛.

Now we get an answer to the question: what should be the set of second-order
lines so that it coincides with the bundle of which it is included?

Let us consider the system of linear equations (3) for 𝑛 ≤ 4. In the case of
𝑛 = 4, we require that these four points do not belong to the same line.

Let Φ be the fundamental matrix of system (3). Then we have rgΦ = 6− 𝑛,
and its columns are the coefficients of the fundamental equations of the lines
from the bundle.

These equations are linearly independent by virtue of the definition of the
fundamental matrix. In this case, the equation of any other line from the bun-
dle can be represented as a linear combination of the fundamental equations.
Consequently, system (3) defines the bundle as a whole.
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Thus, in order for a parametric set to coincide with the 𝑛-point bundle of
which it is a part, it is necessary and sufficient that this set contain 6− 𝑛 lines
of the bundle with linearly independent equations.

So in the last of the considered examples, for the set to coincide with the
bundle, five lines with linearly independent equations will be required.
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On the passage of a second-order line through
four given points in a plane

For Theorem 3, it turns out to be true, useful for applications,

Corollary
1

Let 𝐹𝑘(𝑥, 𝑦) = 0 𝑘 ∈ 1, 3 are the equations of second-
order lines (where the first two are the equations of non-
coinciding lines), passing through four given points, not
lying on the same line. Then ∃𝜆, 𝜇 ∈ R, such that

𝐹3(𝑥, 𝑦) = 𝜆𝐹1(𝑥, 𝑦) + 𝜇𝐹2(𝑥, 𝑦) = 0 . (5)

That is, the parametric set (5) will always coincide with the 4-point bundle. The
proof of Corollary 1 is given in Appendix 1.

Further (for brevity) by the bundle we will mean the 4-point bundle.

The line type (according to Table 1) is determined by the signature of the
number Δ, found by formula (2).
Let us now analyze which lines are included in the bundle (4). Their type,
according to formula (2), is described by the sign expressions

Δ(𝜆, 𝜇) = det

(︂
𝜆

⃦⃦⃦⃦
𝐴1 𝐵1

𝐵1 𝐶1

⃦⃦⃦⃦
+ 𝜇

⃦⃦⃦⃦
𝐴2 𝐵2

𝐵2 𝐶2

⃦⃦⃦⃦)︂
=

= (𝜆𝐴1 + 𝜇𝐴2)(𝜆𝐶1 + 𝜇𝐶2)− (𝜆𝐵1 + 𝜇𝐵2)
2 =

= 𝜆2(𝐴1𝐶1 −𝐵2
1) + 𝜆𝜇(𝐴1𝐶2 +𝐴2𝐶1 − 2𝐵1𝐵2) + 𝜇2(𝐴2𝐶2 −𝐵2

2)

That is, the function Δ(𝜆, 𝜇) is homogeneous in {𝜆;𝜇}, of the second order.
Therefore, the bundle (5) can contain no more than two lines of parabolic type,
for which Δ(𝜆, 𝜇) = 0.

Exercise
1

Prove that if a bundle contains two parabolas, then their axes
are never parallel.
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We introduce a special notation that will be useful later. Let 𝐴𝑘 𝑘 ∈ 1, 4
be given distinct points, any three of which do not lie on the same line, and
𝐿𝑖𝑗(𝑥, 𝑦) = 0 is the equation of a line passing through points 𝐴𝑖 and 𝐴𝑗 𝑖, 𝑗 ∈
1, 4.

Problem
1

Let P be the intersection point of the altitudes in triangle KMN.
Prove that the hyperbolas passing through points K, M, N and P
have perpendicular asymptotes.

Solution. According to the problem statement 𝐾𝑀 ⊥𝑁𝑃 and 𝐾𝑁 ⊥𝑀𝑃 ,
then in the introduced notations we have 𝐿𝐾𝑀𝐿𝑁𝑃 = 0 and
𝐿𝐾𝑁𝐿𝑀𝑃 = 0. Each of these equalities is a 2nd order equation
of the form (1), for which 𝐴+ 𝐶 = 0.

Solution
is found.

Since by Theorem 4 all the lines of the 2nd order, passing through
the points 𝐾,𝑀,𝑁 and 𝑃 , have equations of the form:

𝛼𝐿𝐾𝑀𝐿𝑁𝑃 + 𝛽𝐿𝐾𝑁𝐿𝑀𝑃 = 0 , (6)

then in (6) ∀𝛼, 𝛽 when reduced to form (1) we also get 𝐴+𝐶 = 0.
Therefore (check it yourself), all lines of this set are hyperbolic
and with 𝐴 + 𝐶 = 0, and hyperbolas with 𝐴 + 𝐶 = 0 have
perpendicular asymptotes.

Exercise
2

Consider also the question: is it possible for the bundle to
consist only of 2nd order lines

a) elliptic,
b) hyperbolic and parabolic?

Problem
2

In an orthonormal coordinate system the following points are
given: 𝐴1 = ‖ 3 1 ‖T, 𝐴2 = ‖ −2 3 ‖T, 𝐴3 = ‖ −1 0 ‖T
and 𝐴4 = ‖ 2 −2 ‖T. It is required to construct a parametric
description of the set of 2nd order lines passing through these
points.

Solution. Let the following points be given in an orthonormal coordinate
system: 𝐴1 = ‖ 3 1 ‖T, 𝐴2 = ‖ −2 3 ‖T, 𝐴3 = ‖ −1 0 ‖T
and 𝐴4 = ‖ 2 −2 ‖T, for which the linear functions, specified in
the formulation of Theorem 4, have (check this yourself!) the
form:
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𝐿12(𝑥, 𝑦) = 2𝑥+ 5𝑦 − 11,
𝐿23(𝑥, 𝑦) = 3𝑥+ 𝑦 + 3,
𝐿34(𝑥, 𝑦) = 2𝑥+ 3𝑦 + 2,
𝐿41(𝑥, 𝑦) = 3𝑥− 𝑦 − 8.

Then the parametric representation of the set of 2nd order lines
passing through these points will be:

𝛼(2𝑥+ 5𝑦 − 11)(2𝑥+ 3𝑦 + 2) + 𝛽(3𝑥+ 𝑦 + 3)(3𝑥− 𝑦 − 8) = 0.

Figure 1 shows graphical representations of some members of
this set:

— in red shows the ellipse obtained when 𝛼 = 𝛽 = 1;
— in green — hyperbola with 𝛼 = 1 and 𝛽 = −3 (the green

dashed lines show its asymptotes);
— in blue — parabola, for which parameter values 𝛼 =

131 +
√
17017

8
and 𝛽 = 1;

— in gray color — a pair of intersecting lines with 𝛼 = −1
and 𝛽 = 1.

Fig. 1. Some lines of the 2nd order of the parametric set
𝛼(2𝑥+ 5𝑦 − 11)(2𝑥+ 3𝑦 + 2) + 𝛽(3𝑥+ 𝑦 + 3)(3𝑥− 𝑦 − 8) = 0.
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If 𝛽 = 0, then Δ = −4𝛼2, and obviously Δ < 0. For 𝛽 ̸= 0 the
resulting trinomial is factored into

Δ = −4𝛽2

(︃
𝛼

𝛽
− 𝑘1

)︃(︃
𝛼

𝛽
− 𝑘2

)︃
, (7)

where the numbers 𝑘1 and 𝑘2 are the roots of the quadratic

equation 𝑘2 −
131

4
𝑘 +

9

4
= 0, equal respectively to

𝑘1 =
131 +

√
17017

8
≈ 32.681;

𝑘2 =
131−

√
17017

8
≈ 0.069.

In the example under consideration, 𝐴 = 4𝛼+ 9𝛽, 𝐵 = 8𝛼 and
𝐶 = 15𝛼− 𝛽, so

Δ = det

⃦⃦⃦⃦
4𝛼+ 9𝛽 8𝛼
8𝛼 15𝛼− 𝛽

⃦⃦⃦⃦
= −4𝛼2 + 131𝛼𝛽 − 9𝛽2.

From (7) it follows that we have lines of the 2nd order parabolic
type, for 𝛼 = 𝑘1𝛽 or for 𝛼 = 𝑘2𝛽. If the quadrilateral 𝐴1𝐴2𝐴3𝐴4

is a trapezoid, then this line is one parabola and a pair of parallel
lines or two such pairs.

Otherwise (as it turns out in our example) these are two parabo-
las. We suggest you figure out the details yourself.
If the insides of the parentheses in (7) have different signs, then
the line type is — elliptical, and the line itself will be ellipse.
Other types of elliptical type are impossible, since the given
points do not coincide.

Finally, if the insides of the brackets
have the same signs, then the desired line of the 2nd order be-
longs to the hyperbolic type.

Solution
is found.

In this case, the line will be a hyperbola, except for the cases
𝛼𝛽 = 0 or 𝛼 = −𝛽, when it turns out to be a pair of inter-
secting lines.
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Figure 2 graphically shows the dependence of the type and type of the 2nd
order line on the values of the parameters 𝛼 and 𝛽 in problem 2.

Fig.2. Dependence of the type and type of the 2nd order line on the values
𝛼 and 𝛽

Points on the plane {0𝛼𝛽} are painted in different colors depending on the
type and type of the 2nd order line:

— pink color marks the cases of ellipses;
— blue color — parabolic cases, i.e. points on {0𝛼𝛽} that lie on

the lines: either 𝛼 = 𝑘1𝛽, or 𝛼 = 𝑘2𝛽;
— light green color — cases of hyperbolas;
— green color — cases of pairs of intersecting lines related to

hyperbolic type, that is, points on the plane 0𝛼𝛽, which
belong to one of the three lines 𝛽 = 0, 𝛼 = 0 and 𝛽 = −𝛼.

Problem
3

Two parabolas whose axes are perpendicular have four points of
intersection. Prove that these points lie on the same circle.
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Solution. We choose a coordinate system in which the axes of symmetry of
the parabolas lie on the coordinate axes, and the equations of the
parabolas are:

𝑦2 = 2𝑝(𝑥− 𝑥0) and 𝑥2 = 2𝑞(𝑦 − 𝑦0) , (8)

where 𝑝 > 0, 𝑞 > 0, 𝑥0 < 0 and 𝑦0 < 0 (see Fig. 3).

If we use Corollary 1 and construct a linear combination of equa-
tions (8), which turns out to be the equation of a circle, then the
problem will be solved.

Fig.3. To solve problem 3
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Solution
obtained.

If we put in formula (4) 𝜆 = 𝜇 = 1, then we get

𝜆
(︀
𝑦2 − 2𝑝(𝑥− 𝑥0)

)︀
+ 𝜇

(︀
𝑥2 − 2𝑞(𝑦 − 𝑦0)

)︀
=

= 𝑥2 − 2𝑝(𝑥− 𝑥0) + 𝑦2 − 2𝑞(𝑦 − 𝑦0) = 0 .

Where from

𝑥2 − 2𝑝𝑥+ 𝑝2 + 𝑦2 − 2𝑞𝑦 + 𝑞2 = −2𝑝𝑥0 + 𝑝2 − 2𝑞𝑦0 + 𝑞2 ,

which is the equation of a circle in ONSC:

(𝑥− 𝑝)2 + (𝑦 − 𝑞)2 = −2𝑝𝑥0 − 2𝑞𝑦0⏟  ⏞  
>0

+𝑝2 + 𝑞2 = 𝑅2 .

Exercise
3

Prove a generalization of the statement contained in the con-
ditions of problem 3:

Let two lines of the second order have four common points.
These points lie on the same circle if and only if the axes of
these lines are perpendicular.

Using this parametric description of a set of 2nd order lines, by choosing the
values of the parameters 𝛼 and 𝛽 it is possible to obtain equations of 2nd order
lines with certain geometric properties.

. Fig.4. To the solution of problem 4
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Let us consider other problems that demonstrate the usefulness of para-
metric sets of 2nd order lines.

Problem
4
«Butterfly
Theorem»

Given a circle in which chords AB and CD intersect chord
PQ at point O — its midpoint. Prove that chords AD and
CB intersect PQ at points equidistant from O.

Solution. Second-order lines: a circle 𝜔 of radius 𝑅 and two pairs of
intersecting lines 𝑓 : 𝐿𝐴𝐵𝐿𝐶𝐷 and 𝑔 : 𝐿𝐴𝑇𝐿𝐶𝑇 obvi-
ously belong to the same set of second-order lines. Therefore,
according to Corollary 1, 𝑔 = 𝜔 + 𝜆𝑓 .
Let us choose a Cartesian coordinate system such that its
origin is at the point 𝑂 (see Fig. 4), and the segment 𝑃𝑄
lies on the 𝑂𝑥 axis. Then

𝜔(𝑥, 𝑦) = 𝑥2 + (𝑦 + 𝑦0)2 −𝑅2,

𝑓(𝑥, 𝑦) = (𝑥 + 𝑝𝑦)(𝑥 + 𝑞𝑦),

where 𝑝 and 𝑞 are some constants.

Since
𝑔(𝑥, 𝑦) = 𝜔(𝑥, 𝑦) + 𝜆𝑓(𝑥, 𝑦)

is true for any 𝑦, then

𝑔(𝑥, 0) = 0 ⇐⇒

⇐⇒ 𝑥2 + 𝜆(𝑥2 + 𝑦20 −𝑅2) = 0

will also be true.

-

Solution
is found

The roots of the last equation are the abscissas of the in-
tersection points of the chord 𝑃𝑄 with the chords 𝐴𝐷 and
𝐶𝐵.

These roots: ±𝑥*, are equal in absolute value and have dif-
ferent signs, from which follows the validity of the statement
being proved.
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Problem
5

The equations of the diagonals of a square are

𝑥 − 8𝑦 = 38,
8𝑥 + 𝑦 = 44,

and the length of its side is
√

130. Find the equations of the
sides of the square.

Solution. 1∘. Let us consider the problem in an orthonormal
coordinate system, in which the diagonals of the square are
on the coordinate axes, and the origin 0′ is the intersection
point of the diagonals (see Fig. 5).

The coordinates of the point 0′ — of the new origin — are
found by solving the system of linear equations{︂

𝑥 − 8𝑦 = 38,
8𝑥 + 𝑦 = 44.

We get 0′{6;−4}.

As new basis vectors, we take the normalized direction vec-
tors of the diagonals of the square.

Since for the straight line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 the vector
‖−𝐵𝐴 ‖T , can serve as a guide vector, then we take the
vectors ⃦⃦⃦

𝑒⃗
′

1

⃦⃦⃦
=

⃦⃦⃦
8√
65

1√
65

⃦⃦⃦T
and

⃦⃦⃦
𝑒⃗

′

2

⃦⃦⃦
=

⃦⃦⃦
− 1√

65
8√
65

⃦⃦⃦T
as the basis vectors.

Therefore, transition formulas from the original orthonormal
coordinate system to the new one will have the form:{︃

𝑥 = 8√
65
𝑥′ − 1√

65
𝑦′ + 6,

𝑦 = 1√
65
𝑥′ + 8√

65
𝑦′ − 4.

(9)
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Fig. 5. To solve problem 5

2∘. Let us now consider a parametric set of lines of the 2nd order,
passing through four points — the vertices of the square.
One of the lines of this set is a pair of intersecting lines,
on which lie the diagonals of the square. It belongs to the
hyperbolic type.
Another is a circle of radius

√
65 with center at the intersec-

tion point of the diagonals. This is an elliptic type.
Finally, there are two pairs of parallel lines on which non-
adjacent sides of the square lie. Here the type is parabolic.
Note that the goal of the problem is to find the equations of
these parallel lines.

3∘. Now we use Corollary 1 to construct a linear combination
(from the known equations of this set), which is the desired
equation of the lines on which the sides of the square lie.
In the original coordinate system, the equation of a pair of
intersecting lines, on which the diagonals lie, will be

(𝑥− 8𝑦 − 38)(8𝑥 + 𝑦 − 44) = 0.
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Check for yourself, that by virtue of (9) this equation in the
new coordinate system will take the form:

𝑥′𝑦′ = 0 .

The equation of a circle passing through the vertices of a
square in the new coordinate system is obvious:

𝑥′2 + 𝑦′2 = 65.

Then, by Corollary 1, the desired equation in the new coor-
dinate system has the form:

𝜆(𝑥′2 + 𝑦′2 − 65) + 𝜇𝑥′𝑦′ = 0. (10)

𝜆 = 0 does not give a solution here, since in this case the
equation defines only lines of hyperbolic type.
Therefore, we set in (10) 𝜆 = 1 and find, for which 𝜇 it
defines lines of parabolic type. Then from the equation

∆ = det

⃦⃦⃦⃦
⃦ 1 1

2𝜇
1
2𝜇 1

⃦⃦⃦⃦
⃦ = 0 =⇒ 𝜇 = ±2.

This gives the equations

(𝑥′ + 𝑦′)2 = 65 and (𝑥′ − 𝑦′)2 = 65 . (11)

And, since the vertices of the square lie on parallel lines,
other cases of a parabolic line (parabola or coinciding lines)
are impossible here.

3∘. Now let us find the form of these equations in the original
coordinate system.
Since both coordinate systems are orthonormal, the matrices
of the direct and inverse transitions for them are orthogonal.
Using this fact, from (9) we obtain{︃

𝑥′ = 8√
65
𝑥 + 1√

65
𝑦 − 44√

65
,

𝑦′ = − 1√
65
𝑥 + 8√

65
𝑦 + 38√

65
.
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Solution
is
found.

Finally, substituting these expressions into (11) yields the
desired equations of pairs of parallel lines[︂

9𝑥 − 7𝑦 = 147,
9𝑥 − 7𝑦 = 17

and
[︂

7𝑥 + 9𝑦 = 71,
7𝑥 + 9𝑦 = −59.

Problem
6
«Pascal’s
Theorem»

If non-coinciding points 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 lie on a 2-
fold line 𝜔, then the intersection points (if such exist) of the
lines 𝐿12 and 𝐿45, 𝐿23 and 𝐿56, 𝐿34 and 𝐿16 lie on the same
line.

Solution.

Solution
is
found.

Each set of four points from six given generates a bundle of
lines of the 2nd order, to which the line 𝜔 belongs.
Let us select two bundles among them containing the points
𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴6, 𝐴1, 𝐴4, 𝐴5 respectively.
The equations of the line 𝜔 in these bundles will be

𝜔 : 𝛼1𝐿12𝐿34 + 𝛽1𝐿14𝐿23 = 0 ,
𝜔 : 𝛼2𝐿16𝐿45 + 𝛽2𝐿14𝐿56 = 0 .

Subtracting these equations term by term, we obtain

𝛼2𝐿16𝐿45 − 𝛼1𝐿12𝐿34 + 𝐿14

(︀
𝛽2𝐿56 − 𝛽1𝐿23

)︀
= 0 .

If we substitute the coordinates of the point 𝐴* :{︂
𝐿16 = 0 ,
𝐿34 = 0 ,

then we get that the point 𝐴* belongs to the

line with the equation Ω : 𝛽2𝐿56 − 𝛽1𝐿23 = 0 . This is true,
since the point 𝐴* does not belong to the line with the equa-
tion 𝐿14 = 0, which would be possible only if the points 𝐴1

and 𝐴4 coincide.

Arguing similarly, we get that the point 𝐴** :

{︂
𝐿12 = 0 ,
𝐿45 = 0 ,

also belongs to the line Ω.

Finally, note that the point 𝐴+ :

{︂
𝐿23 = 0 ,
𝐿56 = 0 ,

belongs to

the line Ω by the definition of the function 𝐿𝑖𝑗(𝑥, 𝑦). There-
fore, three points lie on this line: 𝐴*, 𝐴** and 𝐴+.
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The Ω line is called Pascal’s line.

Also note that the condition does not specify whether the closed line
𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 has self-intersection points or not. In this case,
different order of numbering of points gives, generally speaking, different
Pascal lines.

Parametric sets of second-order lines can be useful for solving not only
geometric problems.

An example of such a case is the problem of choosing a replacement of
an unknown that leads to a decrease in the order of the equation being
solved.

Let it be required to solve the fourth-order equation

𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 , (12)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R.
A number of methods for solving equation (12) are currently known.

For example, the Ferrari method, which, like other methods, is based on
solving the resolvent — an auxiliary equation of the 3rd degree.

Let us consider the method for constructing the resolvent using a para-
metric set of second-order lines.

It is easy to verify that equation (12) and the system of equations{︂
𝑦 − 𝑥2 = 0,

𝑦2 + 𝑎𝑥𝑦 + 𝑏𝑦 + 𝑐𝑥 + 𝑑 = 0
(13)

are equivalent.
Let the equations of system (13) be the equations of the 2nd order lines,

the left-hand sides of which we denote as 𝑓 and 𝑔, respectively.
To solve system (13), and, consequently, equation (12), means: to find

the coordinates of the intersection points of the lines 𝑓 = 0 and 𝑔 = 0. Note
that in (13) the second line 𝑔 = 0 can be replaced by the line 𝜆𝑓 + 𝑔 = 0,
where 𝜆 is some real parameter. In this case, the solutions of (13) will
remain the same as before.

However, if in (13) the second line is degenerate, then solving system
(13) is reduced to finding only the roots of some quadratic equations. The
degeneracy condition of the line 𝜆𝑓 + 𝑔 = 0

𝜆
(︁
𝑦 − 𝑥2

)︁
+ 𝑦2 + 𝑎𝑥𝑦 + 𝑏𝑦 + 𝑐𝑥 + 𝑑 = 0
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or
−𝜆𝑥2 + 𝑎𝑥𝑦 + 𝑦2 + 𝑐𝑥 + (𝑏 + 𝜆)𝑦 + 𝑑 = 0 ,

by virtue of Theorem 2 has the form of equality

det

⃦⃦⃦⃦
⃦⃦⃦⃦ −2𝜆 𝑎 𝑐

𝑎 2 𝑏 + 𝜆

𝑐 𝑏 + 𝜆 −2𝑑

⃦⃦⃦⃦
⃦⃦⃦⃦ = 0 ,

which is a cubic equation with respect to the parameter 𝜆.
The resulting equation has the form

𝜆3 + 2𝑏𝜆2 + (𝑎𝑐 + 𝑏 + 4𝑑)𝜆 + 𝑑𝑎2 + 𝑎𝑏𝑐− 𝑐2 = 0 (14)

is the desired resolvent.
Indeed, let 𝜆 be a root of (14). In this case 𝜆𝑓 +𝑔 = 0 is the equation of

a degenerate line of the second order, the left side of which is decomposed
into two linear factors. Then, using the equality 𝑦 = 𝑥2 allows us to find
the roots of (12) by solving only two quadratic equations.
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Appendix 1.
Proofs of Lemmas and Theorems

Lemma
1

Through any five points of the plane one can draw
a line of the 2nd order.

Proof.

The 2nd order lines passing through a given set of points corre-
spond to non-trivial solutions of system (3).
System (3) is homogeneous. The number of its equations is
less than the number of unknowns. Therefore, such systems (3)
have non-trivial solutions. From which follows the existence of
a second-order line passing through the given points.

The lemma is proved.

Lemma
2

Through any five non-coinciding points of the plane,
four of which lie on the same line, one can draw
infinitely many second-order lines.

Proof.

Let four of the five points lie on the line 𝑎𝑥+ 𝑏𝑦 + 𝑐 = 0, where
the numbers 𝑎, 𝑏 and 𝑐 are determined uniquely. And let the
line 𝑎′𝑥 + 𝑏′𝑦 + 𝑐′ = 0 pass through the fifth point, for which
there are infinitely many possible values
of the numbers 𝑎′, 𝑏′ and 𝑐′. Then any second-order line of the

form
(𝑎𝑥 + 𝑏𝑦 + 𝑐)(𝑎′𝑥 + 𝑏′𝑦 + 𝑐′) = 0

passes through all five given points.

The lemma is proved.
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Lemma 3 Through any five non-coinciding points of the plane,
three of which belong to the same line, and any four
do not lie on the same line, it is possible to draw a
line of the second order, and only one.

Proof.

Since a non-degenerate line of the 2nd order can have no more
than two points of intersection with any line, then the line of
the 2nd order under consideration is degenerate.
The degenerate line in the case under consideration is the union
of two lines (possibly parallel), one of which passes through
three points lying on the same line. And the second passes
through the remaining two.
From which follows the uniqueness of such a line of the 2nd
order.

The lemma is proved.

Lemma 5 For 1 < 𝑛 < 4, system (3) does not have linearly
dependent equations if all points are different.

Proof.

For two distinct points in the plane, there obviously always
exists a second-order line, passing through the first of them and
not passing through the second. By Lemma 4, in this case, the
equations of system (3) are linearly independent.

The validity of this statement for the case of three points not
lying on one line is proved by similar reasoning.

Lemma 3 implies the uniqueness of a second-order line passing
through three points of some line and two distinct points not
lying on this line.

Then, by Lemma 4, the equations of system (3), corresponding
to the first three points, are linearly independent.

The lemma is proved.
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Lemma 6 For 4 ≤ 𝑛 ≤ 5, system (3) has linearly dependent
equations if and only if at least four distinct points
lie on one straight line.

Proof.

Sufficiency follows immediately from Lemmas 2 and 4.
Let us prove necessity.
Let 𝑛 = 5 and let no three of them lie on the same line. Then
four of them will be the vertices of a (possibly non-convex, see
problem 1) quadrilateral.

The pairs of lines on which the non-adjacent sides of this quadri-
lateral lie will be lines of the 2nd order of hyperbolic or parabolic
types. Each of these pairs passes through the given four points.
There are no other common points for them, which contradicts
Lemma 4.
The case when three of the five points lie on the same line, but
no four do, contradicts Lemma 4 by virtue of Lemma 3. As a
result, only the case remains when four points lie on the same
line.

The lemma is proved.]

Theorem
3

Through any five non-coinciding points of the plane,
any four of which do not lie on the same line, one
can draw a line 2nd order and only one.

Proof.

The existence of such a line is proved
in Lemma 1. Its uniqueness follows from
Lemmas 4 and 6.

The theorem is proved.

Corollary
1

Let 𝐹𝑘(𝑥, 𝑦) = 0 𝑘 ∈ 1, 3 be the equations of the
2nd order lines (where the first two are the equa-
tions of non-coincident lines) passing through four
given points that do not lie on the same line. Then
∃𝜆, 𝜇 ∈ R, such that

𝐹3(𝑥, 𝑦) = 𝜆𝐹1(𝑥, 𝑦) + 𝜇𝐹2(𝑥, 𝑦) = 0 . (5)
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Proof.

If 𝐹3 coincides with 𝐹1 or with 𝐹2, then the assertion of Corol-
lary 1 is obvious.

Otherwise, we take a point with coordinates {𝑥5, 𝑦5}, belong-
ing to 𝐹3 and not belonging to 𝐹1 or 𝐹2. The resulting set of
five points satisfies Theorem 3 (check it yourself). Therefore, a
unique second-order line passes through them.

Since the point {𝑥5, 𝑦5} does not belong to either 𝐹1 or 𝐹2,
then both 𝐹1(𝑥5, 𝑦5) ̸= 0, and 𝐹2(𝑥5, 𝑦5) ̸= 0. Therefore, from
condition (5), when substituting the coordinates {𝑥5, 𝑦5} into
it, we can find the numbers 𝜆 and 𝜇, which determine the type
of equation (5).

The corollary is proved.
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Appendix 2.
Solution of exercises

Exercise
1

Prove that if a bundle contains two parabolas, then their
axes are never parallel.

Solution.

Solution
obtained.

Different parabolas from one bundle must have four com-
mon points. For parabolas with parallel axes this is obvi-
ously not true.
Note that similar reasoning applies when considering a
parabola and a pair of parallel lines, or two pairs of par-
allel lines.

Exercise
2

Consider also the question: is it possible for the bundle to
consist only of 2nd order lines

a) elliptic type,
b) hyperbolic and parabolic types?

Solution. a) The answer to this question is negative. Indeed,
through any four points one can draw a pair of intersecting
lines. Therefore, any bundle contains lines of hyperbolic
type.
Moreover, if the bundle contains an ellipse, then due to
the continuity of the function ∆(𝜆, 𝜇) it will contain (as
an intermediate case of elliptic and hyperbolic types) two
lines of parabolic type.

b) Here we have to consider two cases.
1. If among the four points defining the bundle, three lie

on the same line, then the answer is positive.
Indeed, the lines of such a bundle consist only of real
lines. Therefore, there is no elliptic type here.
On the other hand, through any four such points one
can draw a pair of parallel and a pair of intersecting
lines (lines of both parabolic and hyperbolic types).
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Solution
is found.

2. If among the four points defining the bundle, no three
lie on the same line, then they can be considered as
the vertices of a quadrangle.
But it is known that any quadrilateral whose vertices
lie on the boundary of a convex set is also convex. The
interiors of a parabola and pairs of parallel lines are
convex sets. Therefore, a quadrilateral formed by the
common points of a bundle is also convex.
It is also known that an ellipse can be described around
any convex quadrilateral.
Indeed, an affine transformation can always ensure
that the sum of the opposite interior angles in a quadri-
lateral is equal to 𝜋. And this is a necessary and suffi-
cient condition for the quadrilateral to be inscribed in
a circle.
So, if the bundle contains a parabolic line, then it also
contains an elliptical line. Therefore, the answer is
negative.

Thus, it is clear that for any bundle of 2nd-order lines passing through
four given points, only three cases are possible:

1) if the points form a convex quadrangle, then the bundle consists of a
pair of parabolic lines and infinite sets, both elliptic and hyperbolic
types.

2) in the case of a non-convex quadrilateral, the bundle consists only
of hyperbolic type lines.

3) finally, if the points do not form a quadrilateral, then the bundle
consists only of degenerate lines, one of which is parabolic, and the
rest are hyperbolic types.

Exercise
3

Prove the following generalization of the statement con-
tained in the statement of problem 3:
Let two second-order lines have four common points.
These points lie on the same circle if and only if the axes
of these lines are perpendicular.
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Solution. Sufficiency. Let the bundle be formed by two second-
order lines with mutually perpendicular axes and have
the equation 𝑓 = 𝜆𝑓1 + 𝜇𝑓2. Let us pass to a rectangular
coordinate system whose axes are parallel to the axes of
the lines 𝑓1 = 0 and 𝑓2 = 0 . Obviously, for them the
coefficients 𝐵 in (1) are zero. Then for any line in this
bundle 𝐵 = 0.
Now we choose 𝜆 and 𝜇 so that in the equation of the line
𝑓 = 0 we have 𝐴 = 𝐶. This gives

𝜆𝐴1+𝜇𝐴2 = 𝜆𝐶1+𝜇𝐶2 ⇔ 𝜆(𝐴1−𝐶1)+𝜇(𝐴2−𝐶2) = 0.
(16)

For 𝜇 = 0 and 𝜆 ̸= 0 the line 𝑓1 = 0 will be a circle.
Similarly, for 𝜇 ̸= 0 and 𝜆 = 0 the circle is the line 𝑓2 = 0.
By virtue of 𝐵 = 0 and (16), sufficiency is proved.

Solution
is found.

Necessity. This bundle contains the circle 𝜔. That is, ∃ 𝜆
and ∃𝜇 such that 𝜔 = 𝜆𝑓1 + 𝜇𝑓2 = 0.
Without loss of generality, we can assume that 𝑓1 = 0 is
neither a parabola nor a circle. (Show yourself that such
a line in the bundle will always exist).
Let us choose a rectangular coordinate system in which
the axes are perpendicular to the axes of the line 𝑓1 = 0.
Then 𝐵1 = 0, and by virtue of 𝐵𝜔 = 0 we will also have
𝐵2 = 0. Thus, the axes of the lines 𝑓1 = 0 and 𝑓2 = 0 are
perpendicular.
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