Экзаменационная программа по курсу «МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ»

Поток Умнова А.Е. ос. сем. 2019/20 уч. г.

Билет 01	Проекция элемента на подмножества евклидова пространства. Существование и единственность проекции в $E^{\it n}$.
Билет 02	Необходимое и достаточное свойство проекции элемента на выпуклое множество в $E^{n}.$
Билет 03	Отделяющие, опорные и разделяющие гиперплоскости.
Билет 04	Теорема Фаркаша.
Билет 05	Задача математического программирования в $E^{\it n}$. Необходимые условия ее решения. Теорема Каруша-Куна-Таккера.
Билет 06	Функция Лагранжа для задачи математического программирования и ее свойства.
Билет 07	Задача линейного программирования (ЛП) в конечномерном евклидовом пространстве. Конусы допустимых и улучшающих вариаций. Прямое условие оптимальности для задач ЛП.
Билет 08	Функция Лагранжа для задачи линейного программирования. Двойственные пары задач линейного программирования.
Билет 09	Основные соотношения двойственности для задач линейного программирования.
Билет 10	Методы решения задач линейного программирования: метод исключения, симплексный метод.
Билет 11	Метод штрафных функций.