Линейные зависимости в линейном пространстве

Линейные операторы

Определение 8.1.1	Пусть каждому элементу x линейного пространства Λ поставлен в соответствие единственный элемент y линейного пространства Λ^* . Тогда говорят, что задан оператор \hat{A} , действующий в Λ и имеющий значения в Λ^* , действие которого обозначается как $y = \hat{A}x$ или $y = \hat{A}(x)$. При этом элемент y называется образом элемента
	x, а элемент x — $npoofpasom$ элемента y .

Как и в § 5.2, операторы подразделяются на *отображения*, если $\Lambda^* \not\subseteq \Lambda$, и *преобразования*, если $\Lambda^* \subseteq \Lambda$. В дальнейшем, за исключением особо оговоренных случаев, будем предполагать, что из контекста ясно, идет ли речь об отображении или о преобразовании.

Определение 8.1.2 Оператор называется *линейным*, если для любых $x, y \in \Lambda$ и любого числа λ имеют место равенства

1°.
$$\hat{A}(x+y) = \hat{A}x + \hat{A}y$$
,
2°. $\hat{A}(\lambda x) = \lambda \hat{A}x$.

Пример 8.1.1 1°. В пространстве двумерных столбцов линейным оператором является правило

$$\left\|\begin{array}{c} \eta_1 \\ \eta_2 \end{array}\right\| = \left\|\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right\| \left\|\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right\|,$$

связывающее столбец-прообраз $x=\left\|\begin{array}{c} \xi_1\\\xi_2\end{array}\right\|$ со столбцом-образом $y=\left\|\begin{array}{c} \eta_1\\\eta_2\end{array}\right\|$.

- 2°. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого пространства его производную функцию.
- 3° . В пространстве непрерывных функций $f(\tau)$ линейным оператором является операция умножения такой функции на независимую переменную τ .

Действия с линейными операторами

Определение 8.2.1	Линейные операторы \hat{A} и \hat{B} называются p авными (что обозначается как $\hat{A} = \hat{B}$), если	
	$\forall x \in \Lambda : \qquad \hat{A}x = \hat{B}x .$	
	Суммой линейных операторов и \hat{A} и \hat{B} называется оператор \hat{C} (что символически обозначается равенством $\hat{C} = \hat{A} + \hat{B}$), ставящий каждому эле-	

Лемма Сумма двух линейных операторов является линейным оператором.

элемент $\hat{A}x + \hat{B}x$.

Доказательство.

Пусть $x,y\in \Lambda$ и λ,μ суть числа, а $\hat{C}=\hat{A}+\hat{B}$, тогда, в силу определений 8.1.2 и 8.2.1,

менту x линейного пространства Λ в соответствие

$$\hat{C}(\lambda x + \mu y) = \hat{A}(\lambda x + \mu y) + \hat{B}(\lambda x + \mu y) =$$

$$= \lambda \hat{A}x + \mu \hat{A}y + \lambda \hat{B}x + \mu \hat{B}y =$$

$$= \lambda \hat{A}x + \lambda \hat{B}x + \mu \hat{A}y + \mu \hat{B}y =$$

$$= \lambda (\hat{A}x + \hat{B}x) + \mu (\hat{A}y + \hat{B}y) =$$

$$= \lambda \hat{C}x + \mu \hat{C}y.$$

Сравнивая начало и конец полученной цепочки равенств, приходим к заключению о линейности оператора $\hat{C}.$

Лемма доказана.

8.2.2	Нулевым оператором O называется оператор, ставящий каждому элементу x линейного пространства Λ в соответствие нулевой элемент этого пространства.
Определение 8.2.3	Оператором, противоположным оператору \hat{A} , называется оператор, обозначаемый \tilde{A} , ставящий каждому элементу x пространства Λ в соответствие элемент \tilde{x} (см. определение 7.1.1).

Из решения задачи 8.1.2 следует, что нулевой оператор линейный. Покажите самостоятельно, что оператор, противоположный любому линейному оператору, также линейный.

Лемма Для любых линейных операторов $\hat{A},\;\hat{B}$ и \hat{C} вы8.2.2 полняются соотношения

$$\begin{split} \hat{A} + \hat{B} &= \hat{B} + \hat{A}\,,\\ \left(\hat{A} + \hat{B}\right) + \hat{C} &= \hat{A} + \left(\hat{B} + \hat{C}\right)\,,\\ \hat{A} + \hat{O} &= \hat{A}\,, \quad \hat{A} + \hat{\tilde{A}} &= \hat{O}\,. \end{split}$$

Определение 8.2.4 Произведением числа λ на линейный оператор \hat{A} называется оператор (обозначаемый $\lambda \hat{A}$), ставящий каждому элементу x линейного пространства Λ в соответствие элемент $\lambda(\hat{A}x)$.

Лемма Для произведения числа на линейный оператор 8.2.3 справедливы соотношения

$$\begin{split} & \left(\alpha\beta\right)\hat{A} = \alpha\left(\beta\right)\hat{A}\,, \quad 1\hat{A} = \hat{A}\,, \\ & \left(\alpha+\beta\right)\hat{A} = \alpha\hat{A} + \beta\hat{A}\,, \\ & \alpha\left(\hat{A}+\hat{B}\right) = \alpha\hat{A} + \alpha\hat{B}\,. \end{split}$$

Теорема Множество acex линейных операторов, действующих в линейном пространстве Λ , является линейным пространством.

Определение 8.2.5 Произведением (иногда композицией или суперпозицией) линейных операторов \hat{A} и \hat{B} называется оператор (обозначаемый как $\hat{A}\hat{B}$), ставящий каждому элементу x линейного пространства Λ в соответствие элемент $\hat{A}(\hat{B}x)$.

Теорема Произведение линейных операторов является ли-8.2.2 нейным оператором, для которого справедливы соотношения

$$(\hat{A}\hat{B})\hat{C} = \hat{A}(\hat{B}\hat{C}), \quad (\hat{A} + \hat{B})\hat{C} = \hat{A}\hat{C} + \hat{B}\hat{C},$$
$$\hat{A}(\hat{B} + \hat{C}) = \hat{A}\hat{B} + \hat{A}\hat{C}.$$

Доказательство.

Докажем вначале линейность произведения линейных операторов. Действительно, $\forall x,y\in \Lambda$ и любых чисел α,β :

$$\hat{A}\hat{B}(\alpha x + \beta y) = \hat{A}(\hat{B}(\alpha x + \beta y)) = \hat{A}(\alpha \hat{B}x + \beta \hat{B}y) =$$

$$= \alpha \hat{A}(\hat{B}x) + \beta \hat{A}(\hat{B}y) = \alpha (\hat{A}\hat{B})x + \beta (\hat{A}\hat{B})y.$$

Проверим теперь сочетательный закон для произведения линейных операторов. Имеем

$$(\hat{A}(\hat{B}\hat{C}))x = \hat{A}(\hat{B}\hat{C}x) = \hat{A}(\hat{B}(\hat{C}x)),$$

но, с другой стороны,

$$((\hat{A}\hat{B})\hat{C})x = (\hat{A}\hat{B})\hat{C}x = \hat{A}(\hat{B}(\hat{C}x)),$$

что и требовалось показать. Остальные утверждения теоремы проверяются аналогично.

Теорема доказана.

Замечание 8.2.1. В общем случае произведение линейных операторов не обладает перестановочным свойством (или, иначе говоря, операторы не коммутируют), то есть $\hat{A}\hat{B}\neq\hat{B}\hat{A}.$

Определение Оператор $\hat{A}\hat{B}-\hat{B}\hat{A}$ называется коммутатором операторов \hat{A} и \hat{B} .

Коммутатор коммутирующих операторов есть нулевой оператор.

Задача B линейном пространстве алгебраических многочленов 8.2.1 $\operatorname{suda} P_n(\tau) = \sum_{k=0}^n \alpha_k \tau^k$ найти коммутатор для операторов:

 \hat{A} , ставящего в соответствие многочлену его производную функцию, и

 \hat{B} — оператора умножения независимой переменной на многочлен.

Решение. Построим оператор $\hat{A}\hat{B}-\hat{B}\hat{A}$. Для любого $P_n(\tau)$ имеем

$$\hat{A}P_n(\tau) = \frac{d}{d\tau}P_n(\tau) = \frac{d}{d\tau}\left(\sum_{k=0}^n \alpha_k \tau^k\right) = \sum_{k=1}^n k\alpha_k \tau^{k-1},$$

$$\hat{B}P_n(\tau) = \tau P_n(\tau) = \sum_{k=0}^n \alpha_k \tau^{k+1}.$$

Откуда получаем

$$\begin{split} \hat{A}\hat{B}\,P_n(\tau) &= \hat{A}\big(\hat{B}\,P_n(\tau)\big) = \frac{d}{d\tau} \sum_{k=0}^n \alpha_k \tau^{k+1} = \sum_{k=0}^n (k+1)\alpha_k \tau^k \;, \\ \hat{B}\hat{A}\,P_n(\tau) &= \hat{B}\big(\hat{A}\,P_n(\tau)\big) = \tau \sum_{k=1}^n k\alpha_k \tau^{k-1} = \sum_{k=0}^n k\alpha_k \tau^k \;, \\ \big(\hat{A}\hat{B} - \hat{B}\hat{A}\big)P_n(\tau) &= \sum_{k=0}^n (k+1)\alpha_k \tau^k - \sum_{k=0}^n k\alpha_k \tau^k = \sum_{k=0}^n \alpha_k \tau^k = \\ &= P_n(\tau), \end{split}$$

Решение и, следовательно, линейные операторы \hat{A} и \hat{B} не коммулолучено. тируют.

В рассмотренной выше задаче 8.2.1 оказалось, что действие коммутатора $\hat{A}\hat{B}-\hat{B}\hat{A}$ на любой элемент линейного пространства многочленов не приводит к изменению этого элемента. Для операторов, обладающих таким свойством, используют специальное наименование.

Определение 8.2.7

Оператор \hat{E} называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства Λ он ставит в соответствие том жее самый элемент, то есть

$$\hat{E}x = x \qquad \forall x \in \Lambda.$$

Докажите самостоятельно, что $\forall \hat{A}: \hat{A}\hat{E}=\hat{E}\hat{A}=\hat{A},$ а также линейность и единственность $\hat{E}.$

Определение 8.2.8

Оператор \hat{B} называется *обратным* для линейного оператора \hat{A} (обозначается \hat{A}^{-1}), если

$$\hat{A}\hat{B} = \hat{B}\hat{A} = \hat{E}.$$

Пример 8.2.1

В линейном пространстве функций $f(\tau)$, имеющих на $[\alpha,\beta]$ производную любого порядка и удовлетворяющих условиям $f^{(k)}(\alpha)=0 \quad \forall k=0,1,2,\ldots$, оператор дифференцирования $\hat{A}f=\frac{df}{d\tau}$ и оператор интегрирования с переменным верхним пределом $\hat{B}f=\int\limits_{\alpha}^{\tau}f(u)\,du$ являются взаимно обратными.

Действительно,

$$\hat{A}\hat{B}\,f=rac{d}{d au}\int\limits_{lpha}^{ au}f(u)\,du=f(au)=\hat{E}f$$
 и

$$\hat{B}\hat{A}f = \int_{\alpha}^{\tau} \frac{df}{d\tau} du = F(\tau) - f(\alpha) = f(\tau) = \hat{E}f.$$

- Замечание 8.2.2. 1°. Не для всякого линейного оператора существует обратный оператор. Например, нулевой оператор \hat{O} не имеет обратного. Действительно, пусть $\hat{O}x = o \quad \forall x \in \Lambda$, тогда для любого \hat{A} имеет место $\hat{A}\hat{O}x = \hat{A}(\hat{O}x) = o$, и, следовательно, равенство $\hat{A}\hat{O} = \hat{E}$ не выполняется ни при каком \hat{A} .
 - 2°. Обратный оператор, если существует, то он единственный. (Покажите это самостоятельно, использовав идею доказательства леммы 5.1.1.)
 - 3° . Из условия $\hat{A}\hat{B}=\hat{E}$ может не следовать выполнение равенства $\hat{B}\hat{A}=\hat{E}$. Это имеет место, например, в пространстве многочленов вида $P_n(\tau)=\sum_{k=0}^n \alpha_k \tau^k$ для пары операторов \hat{A} и \hat{B} , где \hat{B} есть оператор умножения многочлена на независимую переменную, а оператор \hat{A} многочлену $P_n(\tau)$ ставит в соответствие многочлен $\sum_{k=1}^n \alpha_k \tau^{k-1}$.

Координатное представление линейных операторов

Пусть в Λ^n заданы базис $\{g_1, g_2, \ldots, g_n\}$ и линейный оператор \hat{A} , имеющий образы в Λ^m с базисом $\{f_1, f_2, \ldots, f_m\}$. Иначе говоря, \hat{A} является *отображением* вида $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$.

В § 7.2 показано, что $\forall x \in \Lambda^n$ существует единственное разложение

$$x = \sum_{i=1}^{n} \xi_i g_i$$
, то есть $||x||_g = ||\xi_1 \xi_2 \dots \xi_n||^{\mathrm{T}}$.

Аналогично в Λ^m существует единственное разложение образа отображения $y=\hat{A}x,$ для которого в силу линейности \hat{A} справедливо представление вида

$$y = \hat{A}x = \hat{A}\left(\sum_{i=1}^{n} \xi_{i}g_{i}\right) = \sum_{i=1}^{n} \xi_{i}\hat{A}g_{i}.$$

Приняв во внимание возможность и единственность в Λ^m разложения $\hat{A}g_i=\sum_{k=1}^m \alpha_{ki}f_k \quad \forall i=[1,n]\,,$ с одной стороны, получаем, что

$$y = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} \alpha_{ki} \xi_i \right) f_k.$$

С другой стороны, если $\|y\|_f = \|\eta_1 \eta_2 \dots \eta_m\|^{\mathrm{T}}$ — координатное представление элемента y в базисе $\{f_1, f_2, \dots, f_m\}$, то имеет место равенство $y = \sum\limits_{k=1}^m \eta_k f_k$.

Наконец, в силу единственности разложения элемента конечномерного пространства по базису, получаем

$$\eta_k = \sum_{i=1}^n \alpha_{ki} \xi_i \qquad \forall k = [1, m].$$
(8.3.1)

Данные соотношения позволяют находить координатное представление образов элементов линейного пространства по координатному представлению их прообразов. При этом отметим, что каждый линейный оператор вида $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$ в паре конкретных базисов $\{g_1, g_2, \ldots, g_n\}$ и $\{f_1, f_2, \ldots, f_m\}$ полностью и однозначно описывается матрицей размера $m \times n$ с элементами α_{ki} .

Определение 8.3.1 Матрица $\|\hat{A}\|_{fg}$ размера $m \times n$, i-м столбцом которой является координатное представление $\|\hat{A}g_i\|_f$, называется матрицей линейного оператора \hat{A} в базисах $\{g_1, g_2, \ldots, g_n\}$ и $\{f_1, f_2, \ldots, f_m\}$.

В использованных обозначениях

В матричной форме уравнения связи (8.3.1) координатных представлений образов и прообразов будут иметь вид

$$||y||_f = ||\hat{A}||_{fg} ||x||_g,$$
 (8.3.2)

в чем легко убедиться, использовав в (8.3.1) для столбцов двухиндексную форму записи: $\eta_{k1} = \sum_{i=1}^n \alpha_{ki} \xi_{i1} \quad \forall k=[1,m]$.

Теорема Между множеством всех линейных операторов 8.3.1 вида $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$ и множеством всех матриц размера $m \times n$ имеется взаимно однозначное соответствие.

Действия с линейными операторами в матричной форме

Будем рассматривать далее оператор вида $\hat{A}:\Lambda^n\to\Lambda^n$, то есть линейное преобразование, действующее в Λ^n с базисом $\{g_1,g_2,\ldots,g_n\}\in\Lambda^n$, матрица которого квадратная, порядка n. Введенные в \S 1.1 и \S 5.1 операции с матрицами позволяют выполнять в конкретном базисе действия с линейными операторами в следующей форме.

 \hat{A}° . Критерий равенства операторов: $\hat{A}=\hat{B}$ \Leftrightarrow $\|\hat{A}\|_g=\|\hat{B}\|_g$.

Действительно, согласно определению 8.2.1 условие $\hat{A} = \hat{B}$ означает, что $\hat{A}x = \hat{B}x \quad \forall x \in \Lambda^n$ или же в координатной форме в силу (8.3.2) $\|\hat{A}\|_g \|x\|_g = \|\hat{B}\|_g \|x\|_g \quad \forall x \in \Lambda^n$.

Но тогда по лемме 5.1.2 матрица $\|\hat{A}\|_g - \|\hat{B}\|_g$ нулевая и, следовательно, условие $\hat{A} = \hat{B}$ равносильно $\|\hat{A}\|_g = \|\hat{B}\|_g$.

 $2^{\circ}.$ Сложение операторов: $\|\hat{A}+\hat{B}\,\|_{g}=\|\hat{A}\|_{g}+\|\hat{B}\|_{g}$.

Действительно, из разложений $\hat{A}g_i = \sum\limits_{k=1}^n \alpha_{ki}g_k \quad \forall i=[1,n]$ и

$$\hat{B}g_i = \sum_{k=1}^n \beta_{ki}g_k \quad \forall i = [1, n]$$
 следует, что

$$(\hat{A} + \hat{B})x = \hat{A}x + \hat{B}x = \sum_{k=1}^{n} \alpha_{ki}g_k + \sum_{k=1}^{n} \beta_{ki}g_k = \sum_{k=1}^{n} (\alpha_{ki} + \beta_{ki})g_k.$$

 3° . Умножение числа на оператор: $\|\lambda\hat{A}\|_q = \lambda \|\hat{A}\|_q$.

Из $\hat{A}g_i = \sum\limits_{k=1}^n \alpha_{ki}g_k \quad \forall i=[1,n]$ для любого числа λ находим,

$$(\lambda \hat{A})g_i = \hat{A}(\lambda g_i) = \hat{A}\left(\lambda \sum_{k=1}^n \alpha_{ki} g_k\right) = \sum_{k=1}^n (\lambda \alpha_{ki})g_k.$$

 4° . Произведение операторов: $\|\hat{A}\hat{B}\|_{a} = \|\hat{A}\|_{a}\|\hat{B}\|_{a}$. По определению матрицы линейного оператора имеем

$$(\hat{A}\hat{B})g_{i} = \hat{A}(\hat{B}g_{i}) = \hat{A}\sum_{k=1}^{n} \beta_{ki}g_{k} = \sum_{k=1}^{n} \beta_{ki}\hat{A}(g_{k}) =$$

$$= \sum_{k=1}^{n} \beta_{ki}\sum_{j=1}^{n} \alpha_{jk}g_{j} = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} \alpha_{jk}\beta_{ki}\right)g_{j} = \sum_{j=1}^{n} \kappa_{ji}g_{j},$$

где $\kappa_{ji} = \sum_{k=1}^{n} \alpha_{jk} \beta_{ki}$, что совпадает с определением 5.1.1 для произведения матриц $\|\hat{A}\|_q$ и $\|\hat{B}\|_q$

 $\|\hat{A}^{-1}\|_{q} = \|\hat{A}\|_{q}^{-1}$. 5° . Обращение операторов: Будем предполагать, что обратный оператор существует. Поскольку из определения 8.2.8 следует, что $\hat{A}^{-1}\hat{A} = \hat{A}\hat{A}^{-1} = \hat{E}$.

и, принимая во внимание результат пункта 4° , получаем, что искомое матричное представление $\|\hat{A}^{-1}\|_q$ оператора \hat{A}^{-1} должно удовлетворять соотношениям

$$\|\hat{A}^{-1}\|_g \|\hat{A}\|_g = \|\hat{A}\|_g \|\hat{A}^{-1}\|_g = \|\hat{E}\|_g,$$

то есть являться обратной матрицей к матрице $\|\hat{A}\|_{q}$.

Следствие Размерность линейного пространства линейных отображений вида $\hat{A}:\Lambda^n\longrightarrow \Lambda^m$ равна $n\times m$. 8.3.1

Изменение матрицы линейного оператора при замене базиса

Выясним, как меняется $\left\|\hat{A}\right\|_{fg}$ — матрица линейного отображения $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$ при замене базисов.

Пусть в пространстве Λ^n даны два базиса $\{g_1,g_2,\ldots,g_n\}$ и $\{g_1',g_2',\ldots,g_n'\}$, связанные матрицей перехода $\|G\|$, а в Λ^m — два базиса $\{f_1,f_2,\ldots,f_m\}$ и $\{f_1',f_2',\ldots,f_m'\}$ с матрицей перехода $\|F\|$. Найдем соотношение, связывающее $\|\hat{A}\|_{f'g'}$ и $\|\hat{A}\|_{fg}$. В этом случае справедлива

Теорема Матрица линейного оператора $\|\hat{A}\|_{f'g'}$ в бази-8.3.2 (g_1',g_2',\ldots,g_n') и $\{f_1',f_2',\ldots,f_m'\}$ связана с матрицей этого же оператора $\|\hat{A}\|_{fg}$ в базисах $\{g_1,g_2,\ldots,g_n\}$ и $\{f_1,f_2,\ldots,f_m\}$ соотношением $\|\hat{A}\|_{f'g'} = \|F\|^{-1} \|\hat{A}\|_{fg} \|G\|$.

Доказательство.

По теореме 7.3.1 при переходе от базиса $\{g_1,g_2,\ldots,g_n\}$ к базису $\{g_1',g_2',\ldots,g_n'\}$ компоненты элементов $x\in\Lambda^n$ прообраза и $y\in\Lambda^m$ — образа при действии оператора \hat{A} в этих базисах связаны формулами перехода, то есть равенствами

$$||x||_g = ||G|| ||x||_{g'}$$
 \mathbf{v} $||y||_f = ||F|| ||y||_{f'}$

где

$$||x||_q = ||\xi_1, \xi_2, \dots, \xi_n||^{\mathrm{T}}$$
 $\mathbf{u} \quad ||x||_{q'} = ||\xi_1', \xi_2', \dots, \xi_n'||^{\mathrm{T}}$

и аналогично

$$\|y\|_f = \|\eta_1, \eta_2, \dots, \eta_m\|^T$$
 $\|y\|_{f'} = \|\eta'_1, \eta'_2, \dots, \eta'_m\|^T$.

При этом в рассматриваемых базисах образы и прообразы элементов связаны соотношениями

$$||y||_f = ||\hat{A}||_{f_g} ||x||_g \quad \text{if} \quad ||y||_{f'} = ||\hat{A}||_{f'g'} ||x||_{g'},$$

и поскольку матрица перехода имеет обратную, то из выписанных соотношений последовательно получаем

$$||y||_{f'} = ||F||^{-1} ||y||_f = ||F||^{-1} ||\hat{A}||_{fg} ||x||_g = ||F||^{-1} ||\hat{A}||_{fg} ||G|| ||x||_{g'}.$$

Но, с другой стороны, $\|y\|_{f'} = \|\hat{A}\|_{f'g'} \|x\|_{g'}$, и мы приходим к равенству

$$\left(\left\| \hat{A} \right\|_{f'g'} - \|F\|^{-1} \left\| \hat{A} \right\|_{fg} \|G\| \right) \|x\|_{g'} = \|o\| \qquad \forall x \in E^n \,,$$

из которого в силу произвольности столбца $\|x\|_{g'}$ и леммы 5.1.2 матрица, стоящая в круглых скобках, нулевая. Откуда следует справедливость утверждения теоремы.

Теорема доказана.

Следствие Матрица линейного $npeoбpaзoвания \hat{A}$ при перехо-8.3.2 де от базиса $\{g_1, g_2, \ldots, g_n\}$ к другому базису $\{g_1', g_2', \ldots, g_n'\}$ с матрицей перехода $\|S\|$ в Λ^n изменяется по правилу

$$\|\hat{A}\|_{g'} = \|S\|^{-1} \|\hat{A}\|_{g} \|S\|.$$

Следствие Значение *определителя* матрицы линейного преоб-8.3.3 разования *не зависит* от выбора базиса в Λ^n .

Доказательство.

По следствию 8.3.2
$$\det \left\| \hat{A} \right\|_{g'} = \det \left(\|S\|^{-1} \left\| \hat{A} \right\|_g \|S\| \right) \,,$$
а в силу теоремы 6.2.4

$$\det\left(\|S\|^{-1}\left\|\hat{A}\right\|_g\|S\|\right) = \left(\det\|S\|^{-1}\right)\left(\det\left\|\hat{A}\right\|_g\right)\left(\det\|S\|\right)\,,$$

а $\det \|S\|^{-1} \cdot \det \|S\| = 1$, то окончательно получаем, что

$$\det \left\| \hat{A} \right\|_{g'} = \det \left\| \hat{A} \right\|_{g}.$$

Следствие доказано.

Область значений и ядро линейного оператора

Трактуя линейный оператор, действующий в линейном пространстве как некоторое обобщение понятия ϕy нкиuu, естественно рассмотреть вопрос об области определения и области значений линейных операторов.

Под областью значений линейного оператора \hat{A} будем понимать множество образов всех элементов $x \in \Lambda$, то есть элементов вида $\hat{A}x$. В этом случае очевидно, что для любого линейного оператора его область определения совпадает с Λ .

Ответ на вопрос: «Что представляет собой область значений линейного оператора?» дает

Теорема Пусть \hat{A} — линейный оператор, действующий в 8.4.1 линейном пространстве Λ . Тогда

- 1°. Множество элементов ${\rm Im}\hat{A}$ есть $no\partial npo-$ странство в Λ .
- ${f 2}^{\circ}$. Если, кроме того, ${f \Lambda}={f \Lambda}^n$ с базисом $\{\,g_1,\,g_2,\,\ldots,\,g_n\}\,,$ то $\dim {
 m Im} \hat{A}={
 m rg}\,\left\|\hat{A}
 ight\|_a$.

Определение Pангом линейного оператора \hat{A} в Λ^n называется размерность его области значений. Ранг линейного оператора \hat{A} обозначается как $\operatorname{rg}\hat{A}$ (или $\operatorname{rank}\hat{A}$).

Следствие $\left. {f B} \right. \, \Lambda^n - {\rm rg} \hat{A} = {\rm rg} \left\| \hat{A} \right\|_g \le n$ и не зависит от выбора 6.4.1 базиса.

Следствие Размерность области значений линейного опе-8.4.2 ратора \hat{A} , действующего на некотором подпространстве Λ^* линейного пространства Λ , не превосходит $\dim \Lambda^*$.

Теорема Ранг произведения линейных операторов \hat{A} и \hat{B} 8.4.2 не превосходит ранга каждого из этих операторов.

Ранг произведения матриц может быть меньше рангов каждого из сомножителей. Например,

$$\left\|\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right\|\left\|\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right\| = \left\|\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right\|.$$

Другой (помимо области значений и ранга) важной характеристикой линейного оператора \hat{A} является совокупность элементов x линейного пространства Λ , называемая sdpom линейного оператора и обозначаемая $\ker \hat{A}$.

Определение Ядро линейного оператора \hat{A} состоит из элементов $x\in\Lambda,$ таких, что $\hat{A}x=o.$

Теорема Если $\Lambda=\Lambda^n$ и $\operatorname{rg} \hat{A}=r$, то $\ker A$ есть подпростран-8.4.4 ство в Λ^n и $\dim \ker \hat{A}=n-r$.

Доказательство.

Пусть в базисе $\{g_1, g_2, \dots, g_n\}$ оператор \hat{A} имеет матрицу $\left\|\hat{A}\right\|_g = \|\alpha_{ij}\|$. По следствию 8.4.1 $\operatorname{rg}\left\|\hat{A}\right\|_g = r$ для любого базиса.

В координатной форме равенство $\hat{A}x = o$, то есть условие принадлежности некоторого элемента $x \in \Lambda^n$ с координатным представлением $\|x\|_g = \|\xi_1, \, \xi_2, \, \dots, \, \xi_n\|^{\mathrm{T}}$ ядру оператора \hat{A} , в силу (8.3.2), имеет вид $\|\hat{A}\|_q \|x\|_g = \|o\|$ или

$$\sum_{i=1}^{n} \alpha_{ij} \xi_j = 0 \qquad \forall i = [1, n].$$
 (8.4.1)

При этом решения однородной системы линейных уравнений (8.4.1) образуют в своей совокупности линейное пространство.

Наконец, поскольку размерность ядра есть максимальное число линейно независимых решений этой системы уравнений, то она, согласно теореме 6.7.1, равна n-r.

Теорема доказана.

Типы линейных отображений

Как было отмечено в § 8.1, в тех случаях, когда область значений оператора не принадлежит области определения, следует говорить об отображении. В § 7.5 было использовано понятие взаимно однозначного отображения, называемого иногда биекцией.

Для отображений также выделяются специальные случаи так называемых инъективных и сюръективных отображений. Рассмотрим эти случаи подробнее.

Определение 8.4.3	Отображение $y=\hat{A}x x\in\Omega,\ y\in\Theta$ множества Ω в
	множество Θ называется <i>инъективным</i> (или <i>инъек-</i>
	$uueu$), если из условия $\hat{A}x_1 = \hat{A}x_2$ вытекает $x_1 = x_2$.

В случае инъекции множество всех значений оператора \hat{A} может не совпадать с Θ .

Определение	Отображение $y=\hat{A}x x\in\Omega,\ y\in\Theta$ множества Ω в		
8.4.4	множество Θ называется сюр π ективным (или сюр π -		
	$e\kappa uue\check{u}),$ если каждый элемент из Θ имеет прообраз		
	в Ω .		

В случае сюръекции прообраз любого элемента из Θ всегда существует в Ω , но, вообще говоря, он не единственен.

В табл. 8.4.1 для сравнения приведены примеры отображений различных типов.

Таблица 8.4.1

Тип отображения	Инъективное	Неинъективное
Сюръективное	Ω Θ	
Несюръективное	Ω Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ	

Отметим также, что в конечномерном случае сюръективность отображения $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$ означает выполнение условия $\Theta = \Lambda^m$, а инъективность — условия $\ker \hat{A} = \{o\}$.

Альтернативную форму условий инъективности и сюръективности в конечномерном случае дает

Теорема Ранг матрицы линейного оператора, являющего-8.4.5 ся сюръективным отображением, равен числу ее строк, а ранг матрицы инъективного отображения равен числу ее столбцов.

Доказательство.

1°. Пусть в базисах $\{g_1, g_2, \ldots, g_n\}$ и $\{f_1, f_2, \ldots, f_m\}$ отображение $\hat{A}: \Lambda^n \longrightarrow \Lambda^m$ имеет матрицу $\left\|\hat{A}\right\|_{fg}$, причем $\operatorname{rg} \left\|\hat{A}\right\|_{fg} = m$.

Тогда система линейных уравнений $\|\hat{A}\|_{fg} \|x\|_g = \|y\|_f$ по теореме 6.6.1 (Кронекера – Капелли) имеет решение $\forall y \in \Lambda^m$, поскольку для расширенной матрицы этой системы ранг также равен m. Значит, для \hat{A} каждый образ имеет хотя бы один прообраз, и данное отображение сюръективно.

2°. Пусть г
д $\left\|\hat{A}\right\|_{fg}=n$. Тогда, по теореме 6.4.1 (Крамера), система линейных уравнений вида

$$\left\| \hat{A} \right\|_{fg} (\|x_1\|_g - \|x_2\|_g) = \|o\|_f$$

имеет единственное решение, которое очевидно тривиальное. Поэтому равные образы имеют равные прообразы, и, следовательно, рассматриваемое отображение инъективно.

Теорема доказана.

Наконец, отображение, являющееся одновременно и инъективным и сюръективным, будет *взаимно однозначным*, или *биекцией*.

В случае, когда линейный оператор \hat{A} является преобразованием в Λ^n с базисом $\{g_1, g_2, \ldots, g_n\}$, оказывается полезным дать уточняющее определению 8.3.1.

Определение 8.4.5

Квадратная, порядка n, матрица $\|\hat{A}\|_g$, столбцы которой есть координатные представления элементов $\hat{A}g_1,\,\hat{A}g_2,\,\ldots,\,\hat{A}g_n$ в базисе $\{g_1,\,g_2,\,\ldots,\,g_n\}$, называется матрицей линейного преобразования \hat{A} этом в базисе.

Инвариантные подпространства и собственные векторы

Определение 8.5.1 Подпространство Λ^* линейного пространства Λ называется *инвариантным* подпространством линейного оператора \hat{A} , если $\forall x \in \Lambda^*$ $\hat{A}x \in \Lambda^*$

Пример 8.5.1 1° . Множество радиусоввекторов точек некоторой прямой на плоскости Oxy, проходящей через начало координат, является инвариантным подпространством оператора поворота на угол π этих радиусоввекторов вокруг оси Oz (см. рис. 8.1).

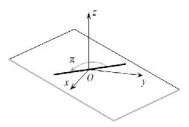


Рис. 8.1

 2° . Для оператора дифференцирования в линейном пространстве функций $f(\tau)$, имеющих на (α, β) производную любого порядка, n-мерным инвариантным подпространством является линейная оболочка совокупности элементов вида $\{e^{\lambda_1 \tau}, e^{\lambda_2 \tau}, \ldots, e^{\lambda_n \tau}\}$, где $\lambda_1, \lambda_2, \ldots \lambda_n$ — некоторые, попарно различные константы.

 $^{^{1}{}m B}$ этом параграфе речь пойдет только об операторах, являющихся преобразованиями.

Теорема Линейный оператор \hat{A} , заданный в линейном 8.5.1 пространстве Λ^n с базисом $\{g_1, g_2, \dots, g_n\}$, имеет матрицу вида

$$\begin{vmatrix} \alpha_{11} & \dots & \alpha_{1r} & \alpha_{1,r+1} & \dots & \alpha_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{r1} & \dots & \alpha_{rr} & \alpha_{r,r+1} & \dots & \alpha_{rn} \\ \hline 0 & \dots & 0 & \alpha_{r+1,r+1} & \dots & \alpha_{r+1,n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \alpha_{n,r+1} & \dots & \alpha_{nn} \end{vmatrix}$$

тогда и только тогда, когда линейная оболочка подмножества первых r базисных элементов $\{g_1,g_2,\ldots,g_r\}$ есть Λ^* — инвариантное подпространство оператора \hat{A} .

В приложениях важную роль играют определяемые ниже «собственные векторы» и «собственные значения» линейных преобразований.

Определение 8.5.2	Ненулевой элемент f называется собственным вектором линейного преобразования \hat{A} , если существует число λ , такое, что $\hat{A}f = \lambda f$.
	Число λ в этом случае называется собственным значением \hat{A} , соответствующим (или отвечающему) собственному вектору f .

Замечание о важности собственных векторов

Допустим, что для некоторого линейного преобразования \hat{A} , заданного в Λ^n , удалось найти n линейно независимых собственных векторов g_1, g_2, \ldots, g_n , для которых выполнены равенства

$$\hat{A}g_1 = \lambda_1 g_1, \quad \hat{A}g_2 = \lambda_2 g_2, \quad \dots, \quad \hat{A}g_n = \lambda_n g_n.$$

Если принять набор этих элементов за базис $\{g_1, g_2, \ldots, g_n\}$, то данные соотношения можно рассматривать как координатные разложения образов базисных элементов:

$$\hat{A}g_k = 0g_1 + 0g_2 + \ldots + \lambda_k g_k + \ldots + 0g_n \qquad \forall k = [1, n].$$

Согласно теореме 7.2.1, эти разложения единственны, поэтому, исходя из определения 8.3.1, можно утверждать, что матрица линейного преобразования в этом базисе будет иметь ∂u агональный вид:

благодаря которому исследование свойств этого преобразования может существенно упроститься.

В том случае, когда удается найти базис, в котором матрица линейного преобразования имеет диагональный вид, данное преобразование принято называть ∂u агонализуемым.

Вычисление собственных векторов и собственных значений линейного оператора в Λ^n

Выберем в Λ^n некоторый базис $\{g_1, g_2, \ldots, g_n\}$, в котором координатное разложение f — собственного вектора линейного преобразования \hat{A} будет $f = \sum_{i=1}^n \xi_i g_i$, а линейное преобразование \hat{A} имеет матрицу $\left\|\hat{A}\right\|_q = \|\alpha_{ij}\|$.

Пользуясь результатами, полученными в § 8.3, символическое равенство $\hat{A}f=\lambda f$ можно записать при помощи матричных операций в виде $\left\|\hat{A}\right\|_{g}\left\|f\right\|_{g}=\lambda\left\|f\right\|_{g}$, или же в координатной форме:

что по правилам действий с линейными операторами в координатах (см. §8.3) равносильно $\left\|\hat{A}-\lambda\hat{E}\right\|_{a}\left\|f\right\|_{g}=\left\|o\right\|_{g}$ или

Система уравнений (8.5.1) с неизвестными $\{\lambda, \xi_1, \xi_2, \dots, \xi_n\}$ нелинейная, но если принять λ за параметр, то относительно неизвестных $\{\xi_1, \xi_2, \dots, \xi_n\}$ она линейная и однородная.

Согласно определению 8.5.2 собственный вектор f должен быть ненулевым. Покажем, что этого можно добиться путем подбора специальных значений параметра λ .

Действительно, необходимым и достаточным условием существования *ненулевого* частного решения однородной системы n линейных уравнений с n неизвестными, согласно следствию 6.7.2, является pa-венство нулю определителя ее основной матрицы.

Поэтому условие, которому должны удовлетворять искомые значения λ , будет иметь вид

$$\det \|\alpha_{ij} - \lambda \,\delta_{ij}\| = 0, \tag{8.5.2}$$

где δ_{ij} — символ Кронекера, или же

$$\det \left| \begin{array}{ccccc} \alpha_{11} - \lambda & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - \lambda & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} - \lambda \end{array} \right| = 0.$$

Определение Уравнение (8.5.2) называется xарактеристическим 8.5.3 yравнением, а функция от λ , равная $\det \| \hat{A} - \lambda \hat{E} \|_g$, — xарактеристическим многочленом преобразования \hat{A} , действующего в Λ^n .

Теорема Характеристический многочлен линейного пре-8.5.2 образования не зависит от выбора базиса в Λ^n .

Доказательство.

Заметим, что преобразование $\hat{A} - \lambda \hat{E}$, очевидно, линейное в силу линейности операторов \hat{A} и \hat{E} . Тогда, согласно следствию 8.3.3, определитель его матрицы не меняется при замене базиса.

Поэтому при переходе от базиса $\{g_1, g_2, \ldots, g_n\}$ к базису $\{g_1', g_2', \ldots, g_n'\}$: $\det \|\hat{A} - \lambda \, \hat{E}\|_q = \det \|\hat{A} - \lambda \, \hat{E}\|_{q'}.$

Теорема доказана.

Характеристическое уравнение является алгебраическим уравнением n-й степени относительно λ , что следует из определения детерминанта 6.1.2 и формулы (8.5.2).

В итоге мы получаем универсальный $\forall \Lambda^n$ алгоритм вычисления собственных значений и соответствующих им собственных векторов:

Решив характеристическое уравнение (8.5.2), из однородной системы уравнений (8.5.1) можно найти собственные векторы, соответствующие последовательно подставляемым в основную матрицу этой системы, найденным собственным значениям.

Примеры использования данного алгоритма в Λ^n иллюстрируют решения задач 8.6.1 и 8.6.2. В случае же линейных пространств, не имеющих базиса, задача отыскания собственных значений и построения собственных векторов может оказаться значительно сложнее.

Например, в линейном пространстве функций, имеющих на некотором интервале производную любого порядка, линейный оператор дифференцирования $\hat{A}=\frac{d}{d\tau}$ имеет бесконечно много собственных векторов (функций) $f(\tau)=\alpha e^{\lambda \tau}$ (где α – произвольная ненулевая константа) и собственных значений λ , удовлетворяющих дифференциальному уравнению вида $\frac{df}{d\tau}=\lambda f\,.$

Свойства собственных векторов и собственных значений

Теорема В комплексном линейном пространстве Λ^n вся-8.6.1 кое линейное преобразование имеет хотя бы один собственный вектор.

Доказательство.

Поскольку характеристическое уравнение является алгебраическим уравнением n-й степени относительно λ , то к нему применима *основная теорема высшей алгебры* , утверждающая, что такое уравнение имеет хотя бы один комплексный корень.

Теорема доказана.

В случае вещественного линейного пространства теорема 8.6.1 неверна. Например, линейный оператор поворота в пространстве плоскости Oxy вокруг оси Oz на угол $\varphi \neq \pi k$ не имеет ни одного собственного вектора.

Действительно, характеристическое уравнение для этого оператора имеет вид (см. \S 5.5):

$$\det \left\| \begin{array}{ccc} \cos\varphi - \lambda & -\sin\varphi \\ \sin\varphi & \cos\varphi - \lambda \end{array} \right\| = 0 \qquad \text{или} \qquad \lambda^2 - 2\lambda\cos\varphi + 1 = 0\,,$$

то есть $\lambda_{1,2} = \cos \varphi \pm i \sin \varphi$. Откуда следует, что при $\varphi \neq \pi k$ вещественных решений данное характеристическое уравнение не имеет.

Для вещественного линейного конечномерного пространства оказывается справедливой

Теорема В вещественном линейном пространстве Λ^n вся-8.6.2 кое линейное преобразование имеет либо хотя бы один собственный вектор, либо двумерное инвариантное подпространство.

Доказательство.

Если характеристическое уравнение имеет вещественный корень, то из системы (8.5.1) находим собственный вектор.

Пусть характеристическое уравнение имеет комплексный корень $\lambda=\alpha+i\beta$ с $\beta\neq 0$. Тогда, решив систему (8.5.1), получим соответствующий ему комплексный собственный вектор f=u+iv, где u и v — элементы Λ^n , представляемые вещественными n-компонентными столбцами.

Покажем теперь, что u и v линейно независимые. Допустим противное: $u=\kappa v$. Тогда из соотношения $\hat{A}f=\lambda f$ имеем $\hat{A}(\kappa+i)v=\lambda(\kappa+i)v$ или $\hat{A}v=\lambda v$, откуда следует вещественность λ , что противоречит предположению о невещественности собственного значения.

С другой стороны, опять-таки из $\hat{A}f = \lambda f$ имеем

$$\hat{A}(u+iv) = (\alpha+i\beta)(u+iv)$$

или, в силу линейности \hat{A} ,

$$\hat{A}u + i\hat{A}v = (\alpha u - \beta v) + i(\beta u + \alpha v).$$

Тогда по определению равенства комплексных чисел получаем, что

$$\begin{cases} \hat{A}u = \alpha u - \beta v, \\ \hat{A}v = \beta u + \alpha v. \end{cases}$$

Но это и означает, что \hat{A} имеет двумерное инвариантное подпространство, совпадающее с двумерной линейной оболочкой элементов u и v, поскольку

$$\hat{A}(\xi u + \eta v) = \xi \hat{A}u + \eta \hat{A}v = \xi(\alpha u - \beta v) + \eta(\beta u + \alpha v) =$$
$$= (\xi \alpha + \eta \beta)u + (\eta \alpha - \xi \beta)v \qquad \forall \xi, \, \eta \in \mathbb{R}.$$

Теорема доказана.

Задача Найти собственные значения и собственные векторы 8.6.1 линейного преобразования \hat{A} , действующего в пространстве трехмерных столбцов и заданного матрицей

$$\left\| \begin{array}{ccc} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -3 & -2 & 3 \end{array} \right\| .$$

Решение.1°. Рассмотрим сначала случай, когда \hat{A} действует в комплексном линейном пространстве. Будем искать собственные значения по формулам (8.5.1) — (8.5.2). Характеристическое уравнение имеет вид

$$\det \begin{vmatrix} -1 - \lambda & -2 & 2 \\ -2 & -1 - \lambda & 2 \\ -3 & -2 & 3 - \lambda \end{vmatrix} = 0 \implies$$

$$(\lambda - 1)(\lambda^2 + 1) = 0 \implies \lambda_1 = 1, \ \lambda_{2,3} = \pm i.$$

То есть из трех собственных значений одно $\lambda_1 = 1$ — вещественное, а два $\lambda_2 = i$ и $\lambda_3 = -i$ — комплексные.

 2° . Найдем соответствующие им собственные векторы. Для $\lambda=1$ по формулам (8.5.2) имеем

$$\left\| \begin{array}{ccc} -2 & -2 & 2 \\ -2 & -2 & 2 \\ -3 & -2 & 2 \end{array} \right\| \left\| \begin{array}{c} \varphi_{(1)1} \\ \varphi_{(1)2} \\ \varphi_{(1)3} \end{array} \right\| = \left\| \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right\|,$$

где $\parallel \varphi_{(1)1} \ \varphi_{(1)2} \ \varphi_{(1)3} \parallel^{\mathrm{T}}$ — координатное представление собственного вектора $f_{(1)}$, отвечающего $\lambda=1$.

Очевидным набором элементарных преобразований приводим полученную систему уравнений к упрощенному виду:

$$\left\|\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 0 & 0 \end{array}\right\| \left\|\begin{array}{c} \varphi_{(1)1} \\ \varphi_{(1)2} \\ \varphi_{(1)3} \end{array}\right\| = \left\|\begin{array}{c} 0 \\ 0 \end{array}\right\|.$$

Откуда получаем, что собственный вектор, отвечающий $\lambda = 1$, представим как

$$||f_{(1)}|| = \begin{vmatrix} \varphi_{(1)1} \\ \varphi_{(1)2} \\ \varphi_{(1)3} \end{vmatrix} = \mu \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} \quad \forall \mu \neq 0.$$

 3° . Пусть теперь $\lambda=i$, тогда систему линейных уравнений (8.5.1)

$$\begin{vmatrix} -1 - i & -2 & 2 \\ -2 & -1 - i & 2 \\ -3 & -2 & 3 - i \end{vmatrix} \begin{vmatrix} \varphi_{(2)1} \\ \varphi_{(2)2} \\ \varphi_{(2)3} \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

можно упростить, разделив $\,$ обе части первого уравнения на 1+i. Заметим, что в полученной таким образом системе

$$\begin{vmatrix} -1 & -1+i & 1-i \\ -2 & -1-i & 2 \\ -3 & -2 & 3-i \end{vmatrix} \begin{vmatrix} \varphi_{(2)1} \\ \varphi_{(2)2} \\ \varphi_{(2)3} \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

третье уравнение оказывается суммой первых двух и его можно отбросить как линейно зависимое. Заменив затем второе уравнение разностью удвоенного первого и второго, получим

$$\left\| \begin{array}{ccc} -1 & -1+i & 1-i \\ 0 & -1+3i & -2i \end{array} \right\| \left\| \begin{array}{c} \varphi_{(2)1} \\ \varphi_{(2)2} \\ \varphi_{(2)3} \end{array} \right\| = \left\| \begin{array}{c} 0 \\ 0 \end{array} \right\|.$$

Полагая значение свободного неизвестного ξ_3 равным числу -1-3i, находим второй собственный вектор:

$$||f_{(2)}|| = \begin{vmatrix} \varphi_{(2)1} \\ \varphi_{(2)2} \\ \varphi_{(2)3} \end{vmatrix} = \mu \begin{vmatrix} 2i \\ 2i \\ -1+3i \end{vmatrix} \quad \forall \mu \neq 0.$$

 4° . Проведя аналогичные вычисления, найдем, что собственный вектор, отвечающий третьему собственному значению $\lambda_3 = -i$, имеет вид

$$||f_{(3)}|| = \begin{vmatrix} \varphi_{(3)1} \\ \varphi_{(3)2} \\ \varphi_{(3)3} \end{vmatrix} = \mu \begin{vmatrix} -2i \\ -2i \\ -1 - 3i \end{vmatrix} \quad \forall \mu \neq 0.$$

(Покажите самостоятельно, что комплексная сопряженность f_2 и f_3 не случайна, то есть если λ_2 и λ_3 комплексно сопряжены, то будут комплексно сопряжены и отвечающие им собственные векторы f_2 и f_3 .)

 5° . Если оператор \hat{A} действует в вещественном линейном пространстве, то согласно теореме 8.6.2 \hat{A} имеет собственный вектор $\|f_1\| = \|0\,1\,1\|^{\mathrm{T}}$, отвечающий собственному значению $\lambda_1 = 1$, и инвариантное подпространство, являющееся линейной оболочкой элементов $u = \mathrm{Re} f_2$ и $v = \mathrm{Im} f_2$, то есть которое будет состоять из элементов вида

$$\left\| \begin{array}{c} \xi_1 \\ \xi_2 \\ \xi_3 \end{array} \right\| = \mu_1 \left\| \begin{array}{c} 0 \\ 0 \\ -1 \end{array} \right\| + \mu_2 \left\| \begin{array}{c} 2 \\ 2 \\ 3 \end{array} \right\| \qquad \forall \mu_1, \, \mu_2 \in \mathbb{R} \, .$$

Заметим, что при необходимости искомое инвариантное подпространство может быть задано и как однородная система линейных уравнений, которая в данном примере имеет вид

$$\xi_1 - \xi_2 = 0$$

Решение

получено. (см., например, решение задачи 8.4.1).

Теорема 8.6.3 Совокупность всех собственных векторов, отвечающих некоторому собственному значению линейного преобразования \hat{A} , дополненная нулевым элементом линейного пространства Λ , является в Λ инвариантным подпространством преобразования \hat{A} .

Доказательство.

Пусть $\hat{A}f_1=\lambda f_1$ и $\hat{A}f_2=\lambda f_2$. Тогда для любых α и β , не равных нулю одновременно, имеем

$$\hat{A}(\alpha f_1 + \beta f_2) = \alpha \hat{A} f_1 + \beta \hat{A} f_2 = \alpha \lambda f_1 + \beta \lambda f_2 = \lambda (\alpha f_1 + \beta f_2),$$

что доказывает справедливость утверждения теоремы.

Теорема доказана.

Определение 8.6.1 Подпространство, состоящее из собственных векторов линейного преобразования \hat{A} , отвечающих некоторому собственному значению, дополненных нулевым элементом, называется инвариантным собственным (или просто собственным) подпространством линейного преобразования \hat{A} .

Теорема Всякое собственное подпространство линейного 8.6.4 преобразования \hat{A} является также инвариантным подпространством линейного преобразования \hat{B} , если \hat{A} и \hat{B} коммутируют.

Доказательство.

Пусть Λ^* — инвариантное собственное подпространство \hat{A} , то есть $\hat{A}f = \lambda f \quad \forall f \in \Lambda^*$. Тогда будет справедливо равенство $\hat{B}\hat{A}f = \hat{B}\big(\lambda f\big)$, а в силу коммутируемости и линейности \hat{A} и \hat{B} будет также верно и $\hat{A}(\hat{B}f) = \lambda(\hat{B}f) \quad \forall f \in \Lambda^*$.

Последнее условие означает, что $\hat{B}f \in \Lambda^* \quad \forall f \in \Lambda^*$, то есть Λ^* — инвариантное подпространство оператора \hat{B} .

Теорема Собственные векторы линейного преобразова-8.6.5 ния, отвечающие различным собственным значениям, линейно независимы.

Доказательство.

Один собственный вектор линейно независим как ненулевой.

Пусть имеются m линейно независимых собственных векторов $f_1,\,f_2,\,\ldots,\,f_m$ линейного преобразования $\hat{A},\,$ отвечающих pasnuчным собственным значениям $\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_m$.

Покажем, что в этом случае будет линейно независим и m+1 собственный вектор $f_1, f_2, \ldots, f_m, f_{m+1}$, если эти элементы также отвечают различным собственным значениям.

Предположим противное: существует нетривиальная и равная нулевому элементу линейная комбинация собственных векторов $f_1, f_2, \ldots, f_m, f_{m+1}$, то есть такая, что

$$\kappa_1 f_1 + \kappa_2 f_2 + \ldots + \kappa_m f_m + \kappa_{m+1} f_{m+1} = 0,$$
(8.6.1)

причем без ограничения общности можно считать, что $\kappa_{m+1} \neq 0$.

Подействуем оператором \hat{A} на обе части равенства (8.6.1), получим

$$\hat{A}(\kappa_{1}f_{1} + \kappa_{2}f_{2} + \dots + \kappa_{m}f_{m} + \kappa_{m+1}f_{m+1}) =$$

$$= \kappa_{1}\lambda_{1}f_{1} + \kappa_{2}\lambda_{2}f_{2} + \dots + \kappa_{m}\lambda_{m}f_{m} + \kappa_{m+1}\lambda_{m+1}f_{m+1} = o.$$
(8.6.2)

С другой стороны, умножая обе части равенства (8.6.1) на λ_{m+1} и вычитая почленно результат этого умножения из равенства (8.6.2), получаем

$$\kappa_1 \left(\lambda_1 - \lambda_{m+1} \right) f_1 + \kappa_2 \left(\lambda_2 - \lambda_{m+1} \right) f_2 + \dots$$

$$\ldots + \kappa_m \left(\lambda_m - \lambda_{m+1} \right) f_m = o.$$

Поскольку все собственные значения разные, а векторы f_1, f_2, \ldots, f_m линейно независимые, то мы приходим к заключению, что $\kappa_1 = \kappa_2 = \ldots = \kappa_m = 0$.

Но тогда из (8.6.1) следует $\kappa_{m+1}=0$, что противоречит сделанному выше предположению, и по принципу математической индукции из линейной независимости элементов f_1, f_2, \ldots, f_m следует линейная независимость элементов $f_1, f_2, \ldots, f_m, f_{m+1}$.

Следствие Линейное преобразование \hat{A} в Λ^n может иметь 8.6.1 (с точностью до произвольного ненулевого множителя) не более чем n собственных векторов, отвечающих различным собственным значениям.

Теорема Если у линейного преобразования \hat{A} , действую-8.6.6 щего в Λ^n , есть n различных собственных значений, то существует базис, образованный собственными векторами, в котором матрица данного линейного оператора имеет диагональный вид, причем на ее главной диагонали расположены собственные числа оператора \hat{A} .

Теорема Пусть Λ^* — собственное подпространство в Λ^n 8.6.7 линейного преобразования \hat{A} , отвечающее некоторому собственному значению λ_0 кратности k. Тогда $1 \leq \dim \Lambda^* \leq k$.

Доказательство.

Выберем в Λ^n базис $\{g_1, g_2, \ldots, g_m, g_{m+1}, \ldots, g_{n-1}, g_n\}$ так, чтобы его первые $m = \dim \Lambda^*$ элементов принадлежали подпространству Λ^* .

В силу условия кратности собственного значения λ_0

$$\hat{A}g_i = \lambda_0 g_i \qquad \forall i = [1, m].$$

Поэтому матрица $\left\|\hat{A} - \lambda \hat{E} \right\|_g$ в этом базисе согласно определению 8.3.1 (см. § 8.3) будет иметь вид

$$\left\| \hat{A} - \lambda \hat{E} \right\|_{q} =$$

Откуда следует, что
$$\det \left\| \hat{A} - \lambda \hat{E} \right\|_q = (\lambda_0 - \lambda)^m P_{n-m}(\lambda).$$

При этом множители вида $(\lambda_0 - \lambda)$ могут содержаться также и в многочлене $P_{n-m}(\lambda)$, значит, $m \leq k$, где k — кратность λ_0 , корня характеристического многочлена $\det \left\| \hat{A} - \lambda \hat{E} \right\|_g$.

Условие $1 \leq \dim \Lambda^*$ очевидно верное, поскольку подпространство Λ^* содержит ненулевые собственные векторы.

Теорема доказана.

Таким образом, размерность собственного подпространства Λ^* , отвечающего собственному значению λ кратности k, может оказаться меньше k.

Теорема Линейное преобразование \hat{A} в Λ^n имеет нулевое собственное значение тогда и только тогда, когда оно не является взаимно однозначным.

Доказательство.

Линейное преобразование \hat{A} имеет в Λ^n собственное значение, равное нулю, тогда и только тогда, когда его матрица вырожденная, то есть в любом базисе $\det \left\| \hat{A} \right\|_{a} = 0$.

Пусть в Λ^n координатный столбец образа связан с координатным столбцом прообраза

Тогда из теоремы 6.4.1 (Крамера) следует, что для заданного координатного столбца элемента-образа $\| \eta_1 \eta_2 \dots \eta_n \|^T$ эта система линейных уравнений, у которой неизвестными являются компоненты столбца элемента-прообраза $\| \xi_1 \xi_2 \dots \xi_n \|^T$, либо оказывается несовместной (элемент-прообраз не существует), либо будет иметь согласно следствию 6.7.1 неединственное решение (элемент-прообраз определяется неоднозначно).

Определение	Степенью порядка $k \geq 2$ квадратной матрицы $ Q $,
8.6.2	обозначаемую как $ Q ^k$, называется произведение
	следующего вида: $\underline{\ Q\ \cdot\ Q\ \cdot\ldots\cdot\ Q\ }$.
	к сомножителей
	Будем также считать, что $ Q ^1 = Q $ и $ Q ^0 = E $.

Теорема Матрица линейного преобразования \hat{A} в Λ^n яв-8.6.9 ляется корнем характеристического уравнения (Гамильтона этого преобразования. - Кэли)

Доказательство.

Докажем теорему в предположении, что собственные векторы преобразования \hat{A} образуют в Λ^n базис $\{f_1, f_2, \ldots, f_n\}$. Пусть данное линейное преобразование в этом базисе имеет матрицу $\|\hat{A}\|_f$ и характеристическое уравнение вида $\sum_{k=1}^n \alpha_k \lambda^k = 0$. Тогда в силу линейности \hat{A} для собственного вектора f, отвечающего собственному значению λ , имеем (см. задачу 8.5.2):

$$\left(\sum_{k=1}^{n} \alpha_{k} \left\| \hat{A} \right\|_{f}^{k}\right) \|f\| = \sum_{k=1}^{n} \alpha_{k} \left(\left\| \hat{A} \right\|_{f}^{k} \|f\|\right) =$$

$$= \sum_{k=1}^{n} \alpha_{k} \left(\left\| \hat{A} \right\|_{f} \left(\left\| \hat{A} \right\|_{f} \dots \left(\left\| \hat{A} \right\|_{f} \|f\|\right) \dots \right)\right) =$$

$$= \sum_{k=1}^{n} \alpha_{k} \left(\lambda^{k} \|f\|\right) = \left(\sum_{k=1}^{n} \alpha_{k} \lambda^{k}\right) \|f\| = 0 \cdot \|f\| = \|o\|.$$

Но поскольку это соотношение верно для всех базисных векторов, то оно будет верно и для каждого элемента $x \in \Lambda^n$. Тогда из леммы 5.1.2 следует, что

$$\sum_{k=1}^{n} \alpha_k \left\| \hat{A} \right\|_f^k = \left\| \hat{O} \right\|_f.$$

Наконец, выполнив переход (с матрицей перехода $\|S\|$) к произвольному базису $\{g_1, g_2, \dots, g_n\}$, получим

$$\sum_{k=1}^{n} \alpha_{k} \|\hat{A}\|_{g}^{k} = \sum_{k=1}^{n} \alpha_{k} \left(\|S\|^{-1} \|\hat{A}\|_{f} \|S\| \right)^{k} =$$

$$= \sum_{k=1}^{n} \alpha_{k} \left(\|S\|^{-1} \|\hat{A}\|_{f} \|S\| \cdot \|S\|^{-1} \|\hat{A}\|_{f} \|S\| \dots \|S\|^{-1} \|\hat{A}\|_{f} \|S\| \right) =$$

$$= \sum_{k=1}^{n} \alpha_{k} \left(\|S\|^{-1} \|\hat{A}\|_{f}^{k} \|S\| \right) = \|S\|^{-1} \left(\sum_{k=1}^{n} \alpha_{k} \|\hat{A}\|_{f}^{k} \right) \|S\| =$$

$$= \|S\|^{-1} \|\hat{O}\|_{f} \|S\| = \|\hat{O}\|_{g}.$$

Линейные функционалы

Рассмотрим специальный случай линейного оператора, когда его область значений содержится в одномерном линейном пространстве, изоморфном множеству вещественных чисел.

Такого рода зависимости, следуя классификации, введенной в \S 5.2, следует относить к функционалам. Напомним данное ранее

Определение	Пусть $\kappa a \varkappa c \partial o m y$ элементу x линейного пространства
8.7.1	Λ поставлено в соответствие <i>однозначно</i> определяе-
	мое число, обозначаемое $f(x)$. Тогда говорят, что в
	Λ задан функционал $f(x)$.

Пример 8.7.1

- 1°. В пространстве n-компонентных столбцов можно задать функционал, сопоставив столбцу $\|\xi_1\,\xi_2\,\dots,\,\xi_n\,\|^{\mathrm{T}}$ число $\sum_{i=1}^n \varphi_i\xi_i$, где φ_i i=[1,n] некоторые фиксированные константы.
- 2° . В векторном геометрическом пространстве функционалом является длина вектора, то есть $f(\vec{r}) = |\vec{r}|$.
- 3° . В пространстве функций $x(\tau)$, определенных на [-1,1], функционалом является так называемая «дельта-функция Дирака», обозначаемая как $\delta(x(\tau))$, ставящая в соответствие каждой функции $x(\tau)$ ее значение в нуле, то есть число x(0).
- 4°. В пространстве функций $x(\tau)$, непрерывных на (α, β) , функционалом является

$$f(x(\tau)) = \int_{0}^{\beta} p(\tau)x(\tau) d\tau,$$

где $p(\tau)$ — некоторая непрерывная на (α,β) функция.

5°. В линейном пространстве квадратных матриц вида $\|A\| = \left\| \begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array} \right\| \ \text{функционалом является}$

$$f(||A||) = \det \left\| \begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array} \right\|.$$

Определение 8.7.2 Функционал f(x) называется линейным функционалом (или линейной формой), если $\forall x,y\in \mathbf{u}\ \forall \lambda,\mu\in\mathbb{R}$ $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)\,.$

Задача Доказать, что в примере 8.7.1 функционалы 1° , 3° и 4° 8.7.1 являются линейными, а функционалы 2° и 5° – нет.

Представление линейного функционала в Λ^n

Пусть в Λ^n дан базис $\{g_1, g_2, \ldots, g_n\}$ и пусть элемент $x \in \Lambda^n$ имеет координатное разложение $x = \sum_{i=1}^n \xi_i g_i$ и координатное представление $\|\xi_1 \xi_2 \ldots \xi_n\|^{\mathsf{T}}$. Тогда для каждого линейного функционала f(x) справедливы соотношения

$$f(x) = f\left(\sum_{i=1}^{n} \xi_i g_i\right) = \sum_{i=1}^{n} \xi_i f(g_i) = \sum_{i=1}^{n} \varphi_i \xi_i.$$

Числа $\varphi_i = f(g_i) \ \forall i = [1, n]$ принято называть компонентами (или координатами) линейного функционала f(x) в данном базисе $\{g_1, g_2, \ldots, g_n\}$.

Из этих равенств следует легко проверяемая

Теорема Каждый линейный функционал f(x) в Λ^n в кон-8.7.1 кретном базисе $\{g_1, g_2, \dots, g_n\}$ имеет однозначно определяемую строку компонентов

$$||f||_g = ||\varphi_1 \varphi_2 \dots \varphi_n||,$$

а каждая строка $\| \varphi_1 \varphi_2 \dots \varphi_n \|$ в этом базисе определяет линейный функционал $f(x) = \sum\limits_{i=1}^n \varphi_i \xi_i$, или в матричном виде $f(x) = \|f\|_g \|x\|_g$.

Теорема В Λ^n в базисах $\{g_1,g_2,\ldots,g_n\}$ и $\{g_1',g_2',\ldots,g_n'\}$ компоненты координатных представлений линейного функционала

$$||f||_g = ||\varphi_1 \varphi_2 \dots \varphi_n|| \quad \mathbf{M} \quad ||f||_{g'} = ||\varphi_1' \varphi_2' \dots \varphi_n'||$$

связаны соотношением $\varphi_j' = \sum_{i=1}^n \sigma_{ij} \varphi_i \quad \forall j=[1,n],$ где коэффициенты σ_{ij} суть элементы матрицы $\|S\|$ — перехода от первого базиса ко второму.

В матричной форме это утверждение имеет вид $||f||_{q'} = ||f||_q ||S||$.

Сопряженное (двойственное) пространство.

Поскольку линейные функционалы являются частным случаем линейных операторов, то для них можно ввести операции сравнения, сложения и умножения на число.

Теорема Множество всех линейных функционалов, задан-8.7.3 ных в линейном пространстве Λ , является линейным пространством.

Определение	Линейное пространство линейных функционалов,
8.7.3	заданных в Λ , называется $conpяженным$ (или $deo \ddot{u}$ -
	$cmвенным$) пространству Λ и обозначается Λ^+ .

Теорема Размерность пространства Λ^{n+} , сопряженного Λ^n , 8.7.4 равна n.

Вторичное сопряженное (вторичное двойственное) пространство

Поскольку Λ^{n+} является n-мерным линейным пространством, то в нем так же, как и в Λ^n , возможно определять линейные функционалы и рассматривать их совокупность как новое линейное пространство Λ^{n++} , сопряженное к Λ^{n+} . Будем называть это пространство *вторичным сопряженным* для линейного пространства Λ^n .

Очевидно, что линейные пространства Λ^n , Λ^{n+} и Λ^{n++} n-мерные и, следовательно, изоморфны друг другу. Однако, можно показать, что для пространств Λ^n и Λ^{n++} существует особый изоморфизм, позволяющий не делать различия между этими пространствами.

Это также позволяет записывать связь между значениями линейных функционалов, действующих в Λ^n и Λ^{n+} , в следующем симметричном виде: f(x)=x(f).