
Multy-Dim ANALYSIS & Integral and series Umnov А.Е., Umnov Е.А. Theme09 2024/25 1

Functional series

We are considering methods of approximation some functions others,
which are simpler or more convenient. Here you can use as an
approximating object series, each member of which is some known
function.

It should be noted that many tasks the series turns out to be not only
an approximation, but the only possible form presentation of solutions.

First let’s give

Definition
9.1

Let each member of a certain series be a function
𝑢𝑘(𝑥), where 𝑥 ∈ 𝑋 ⊂ R .

Then we will say that functional series

∞∑︁
𝑘=1

𝑢𝑘(𝑥) (9.1)

is given with domain 𝑋 .



Multy-Dim ANALYSIS & Integral and series Umnov А.Е., Umnov Е.А. Theme09 2024/25 2

Types of convergence of a functional series

The concepts of series sum, partial sum, as well as the concepts of
pointwise and absolute convergence functional series, we introduce just as
these concepts were defined for number series.

For example, the function 𝑆𝑛(𝑥) =
𝑛∑︀

𝑘=1

𝑢𝑘(𝑥) we will call the 𝑛-th

partial sum of the series (9.1),

Definition
9.2

The function 𝐹 (𝑥) is called limit function for

functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) , if ∀𝑥0 ∈ 𝑋 occurs

lim
𝑛→∞

𝑆𝑛(𝑥0) = 𝐹 (𝑥0) .

In some cases we will also use sum of a series 𝑟𝑛(𝑥) =
∞∑︀

𝑘=𝑛+1

𝑢𝑘(𝑥),

called the 𝑛-th remainder of the series (9.1).
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Definition
9.3

We will also say that if

lim
𝑛→∞

𝑆𝑛(𝑥0) = 𝐹 (𝑥0) ∀𝑥0 ∈ 𝑋 , (9.2)

then the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) converges

pointwise to 𝐹 (𝑥) on the set 𝑋 .

Fact of pointwise convergence of a functional series on the set 𝑋 can be
denoted as follows: 𝑆𝑛(𝑥)→

𝑋
𝐹 (𝑥) at 𝑛 → ∞ . The absence of pointed

convergence on this set is denoted by accordingly, as 𝑆𝑛(𝑥) ̸→
𝑋

𝐹 (𝑥) at
𝑛 → ∞ .

In quantifier form, condition (9.2) is formulated as follows:

∀𝑥0 ∈ 𝑋 and ∀𝜀 > 0 ∃𝑁𝑥0, 𝜀, such as ∀𝑛 ≥ 𝑁𝑥0, 𝜀 inequality⃒⃒⃒
𝑆𝑛(𝑥0)− 𝐹 (𝑥0)

⃒⃒⃒
< 𝜀 (9.3)

is true.

Note also that the functional series is called absolutely convergent, if series
𝑛∑︀

𝑘=1

⃒⃒
𝑢𝑘(𝑥)

⃒⃒
converges pointwise.
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As for functional sequences, pointwise convergence of a functional series
does not guarantee the coincidence of function properties 𝑢𝑘(𝑥) and 𝐹 (𝑥) ,
which illustrates

Problem
9.1

Find the limit function for functional series

∞∑︁
𝑘=1

𝑥2(︀
1 + (𝑘 − 1)𝑥2

)︀(︀
1 + 𝑘𝑥2

)︀ on set 𝑥 ∈ R .
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Solution. Note that the common member of this functional series
decomposes into simple fractions

𝑢𝑘(𝑥) =
1

1 + (𝑘 − 1)𝑥2
−

1

1 + 𝑘𝑥2
.

Whence it follows that

𝑆𝑛(𝑥) =

(︃
1−

1

1 + 𝑥2

)︃
+

(︃
1

1 + 𝑥2
−

1

1 + 2𝑥2

)︃
+. . .

. . .+

(︃
1

1 + (𝑘 − 1)𝑥2
−

1

1 + 𝑘𝑥2

)︃
,

and we get

𝑆𝑛(𝑥) = 1−
1

1 + 𝑛𝑥2
=

𝑛𝑥2

1 + 𝑛𝑥2
.
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Solution
found.

It is easy to see that in this case

𝐹 (𝑥) = lim
𝑘→∞

𝑆𝑛(𝑥) = lim
𝑘→∞

𝑛𝑥2

1 + 𝑛𝑥2
= sgn2𝑥 =

⃒⃒
sgn𝑥

⃒⃒
.

Comparison of the properties of the functions 𝑢𝑘(𝑥) and 𝐹 (𝑥) (see Fig.
1) in Problem 9.1 leads us to a conclusion similar to that obtained for
functional sequences. Namely:

for pointwise convergence, the properties of the terms functional
range may do not coincide with the properties of the limit function.
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Fig.1. Graphs of functions 𝑆𝑛(𝑥) for 𝑛 = 1, 2, 4, 8, 16 to Problem 9.1.
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Uniform convergence of a functional series

In the definitions made, the convergence of a functional series is
identified with convergence functional sequence consisting of partial sums
of the series.

Therefore it is natural to expect that conditions ensuring the
coincidence of properties of members functional series and its limit
function, can be formulated using the concept uniform convergence.

By making appropriate changes to the Definition 9.3 (pointwise
convergence on the set 𝑋 function sequence {𝑆𝑛(𝑥)} ) we get

Definition
9.4

Let’s say that the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) converges

uniformly on the set 𝑋 to the function 𝐹 (𝑥) , if

∀𝜀 > 0 ∃𝑁𝜀 : ∀𝑥 ∈ 𝑋 and ∀𝑛 ≥ 𝑁𝜀,

such as inequality
⃒⃒⃒
𝑆𝑛(𝑥)− 𝐹 (𝑥)

⃒⃒⃒
< 𝜀 is true.

This property, as for functional sequences, we will denote by the symbol
∞∑︀
𝑘=1

𝑢𝑘(𝑥)⇒
𝑋

𝐹 (𝑥) at 𝑛 → ∞ .
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Let us emphasize once again that the difference between definitions 9.4
and 9.3 is that in the case of uniform convergence of the functional series,
number 𝑁𝜀 is found (selected) according to the same rule for all points
of the set of arguments 𝑋 . While for pointwise convergence the choice of
𝑁𝑥0,𝜀 can be done for each 𝑥 individually.

As in the case of functional sequence from the uniform convergence of
the functional series should be pointwise, but not vice versa.

Accordingly, properties of absence of pointwise or uniform convergence

We will denote the functional series by symbols
∞∑︀
𝑘=1

𝑢𝑘(𝑥) ̸→
𝑋

𝐹 (𝑥) and
∞∑︀
𝑘=1

𝑢𝑘(𝑥)) ̸⇒
𝑋

𝐹 (𝑥) .

Then the property of non-uniform convergence of a functional series
can be described by

Definition
9.5

We will say that the series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) converges not

uniformly on the set 𝑋 , if at 𝑛 → ∞
𝑆𝑛(𝑥)→

𝑋
𝐹 (𝑥) , but 𝑆𝑛(𝑥) ̸⇒

𝑋
𝐹 (𝑥) .
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Let us now formulate conditions for the coincidence of properties of
members of a functional series and its limit function.

Theorem
9.1

If all terms of functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) are

continuous functions on [ 𝑎, 𝑏 ], and the series
converges uniformly on [ 𝑎, 𝑏 ] to the limit function
𝐹 (𝑥), then 𝐹 (𝑥) is continuous on [ 𝑎, 𝑏 ].

Theorem
9.2

If all terms of functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) are

continuous functions on [ 𝑎, 𝑏 ], and the series
converges uniformly on [ 𝑎, 𝑏 ] to the limit function

𝐹 (𝑥), then the functional series
∞∑︀
𝑘=1

𝑥∫︀
𝑥0

𝑢𝑘(𝑢) 𝑑𝑢

converges uniformly to the function
𝑥∫︀

𝑥0

𝐹 (𝑢) 𝑑𝑢 .

where 𝑥0 ∈ [ 𝑎, 𝑏 ] .

Theorem
9.3

If all terms of functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) are

continuously differentiable functions on [ 𝑎, 𝑏 ],
— the series itself converges at some point on [ 𝑎, 𝑏 ] ,
and
— the series of 𝑢′

𝑘(𝑥) converges uniformly on [ 𝑎, 𝑏 ] ,
then

𝐹 ′(𝑥) =

∞∑︁
𝑘=1

𝑢′
𝑘(𝑥) ,

where 𝐹 (𝑥) is continuously differentiable limit
function of original functional series. Moreover, the

series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) also converges uniformly.
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Conditions for uniform convergence of functional series

Theorems 9.1 — 9.3 are based on the concept of uniform convergence
for functional series. They give sufficient conditions, at which the limit
function will have the same properties as the terms of the series.

Therefore, the conditions for uniform convergence of functional series
are of practical interest.
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Let us formulate one of the criteria for the 𝑛-th remainder of the
functional series

∞∑︀
𝑘=1

𝑢𝑘(𝑥)

𝑟𝑛(𝑥) =

∞∑︁
𝑘=𝑛+1

𝑢𝑘(𝑥) = 𝐹 (𝑥)− 𝑆𝑛(𝑥) .

Theorem
9.4

In order for the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) defined

on the set 𝑋 converged uniformly on this set,
necessary and sufficient to

sup
𝑥∈𝑋

⃒⃒
𝑟𝑛(𝑥)

⃒⃒
→ 0 at 𝑛 → ∞ .
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Corollary
9.1

For uniform convergence of a functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) defined on the set 𝑋 , it is necessary that

𝑢𝑘(𝑥)⇒
𝑋

0 .

Theorem
9.5
(Weyer-
strass
sign)

If for the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) defined on the

set 𝑋 , there is a convergent numerical series
∞∑︀
𝑘=1

𝑎𝑘

such that ∀𝑘 ≥ 𝑘0 and ∀𝑥 ∈ 𝑋 the inequalities⃒⃒
𝑢𝑘(𝑥)

⃒⃒
≤ 𝑎𝑘

are true,
then the original functional series converges
uniformly on the set 𝑋 .
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Theorem
9.6
(Cauchy
criterion)

For uniform convergence of a function series
∞∑︀
𝑘=1

𝑢𝑘(𝑥)

defined on the set 𝑋 , necessary and sufficient,
to

∀𝜀 > 0 ∃ 𝑁𝜀 :
∀𝑘 ≥ 𝑁𝜀 , ∀𝑝 ∈ N, ∀𝑥 ∈ 𝑋,

such that inequality

⃒⃒⃒⃒
⃒ 𝑛+𝑝∑︀
𝑘=𝑛+1

𝑢𝑘(𝑥)

⃒⃒⃒⃒
⃒ < 𝜀 is true.

Theorem
9.7
(negation
of the
Cauchy
criterion)

In order for the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) , defined

on the set 𝑋 , did not converge uniformly, necessary and
sufficient,

so that for any 𝑁 ∈ N found
𝜀0 > 0 , 𝑘0 ≥ 𝑁 , 𝑝0 ∈ N and 𝑥0 ∈ 𝑋

such that the inequality holds⃒⃒⃒⃒
⃒
𝑛0+𝑝0∑︁
𝑘=𝑛0+1

𝑢𝑘(𝑥0)

⃒⃒⃒⃒
⃒ ≥ 𝜀0 .

It is advisable to use the Cauchy criterion (as well as its negation) in
cases where the limit function 𝐹 (𝑥) is unknown or cannot be represented
in a form convenient for use.



Multy-Dim ANALYSIS & Integral and series Umnov А.Е., Umnov Е.А. Theme09 2024/25 15

Theorem
9.8
(Dirichlet
test)

Functional series
∞∑︀
𝑘=1

𝑎𝑘(𝑥)𝑏𝑘(𝑥) , defined on the set

𝑋 , converges uniformly on this set, if
1) sequence of partial sums of a series

∞∑︀
𝑘=1

𝑎𝑘(𝑥) is limited to 𝑋 ,

2) functional sequence { 𝑏𝑘(𝑥) } is mono-
tonic ∀𝑥 ∈ 𝑋 and 𝑏𝑘(𝑥)⇒

𝑋
0 .

Theorem
9.9
(Abel
test)

Functional series
∞∑︀
𝑘=1

𝑎𝑘(𝑥)𝑏𝑘(𝑥) , defined on the set

𝑋 , converges uniformly on this set, if

1) functional series
∞∑︀
𝑘=1

𝑎𝑘(𝑥) converges

uniformly on 𝑋 ,

2) functional sequence { 𝑏𝑘(𝑥) } is mono-
tonic ∀𝑥 ∈ 𝑋 and it is bounded on the
set 𝑋 .
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Examples of studying
functional series for convergence

Problem
9.2

Investigate the uniform convergence of a functional series

∞∑︁
𝑘=1

arctg(𝑘𝑥)

𝑥4 + 𝑘 3
√
𝑘

𝑥 ∈ (−∞,+∞) .

Solution.

Solution
found.

1) For any fixed 𝑥 this series converges pointwise by
comparison criteria (check it!).

2) Due to inequalities
⃒⃒
arctg 𝑥

⃒⃒
≤

𝜋

2
and 𝑥4 + 𝑘 3

√
𝑘 ≥

𝑘 3
√
𝑘 , which are true when ∀𝑥 ∈ R and ∀𝑘 ∈ N , for the

general term of the series the following estimate is valid:⃒⃒⃒⃒
⃒ arctg(𝑘𝑥)

𝑥4 + 𝑘 3
√
𝑘

⃒⃒⃒⃒
⃒ ≤

𝜋

2

1

𝑘 3
√
𝑘
,

Since the majorizing number series
𝜋

2

∞∑︀
𝑘=1

1

𝑘 3
√
𝑘

converges, then by Weierstrass’s sign (Theorem 9.5)
the functional series under study will converge uniformly.
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Problem
9.3

Investigate the uniform convergence of a functional series

∞∑︁
𝑘=1

3𝑘 sin
𝑥

4𝑘
𝑥 ∈ [ 0,+∞) .

Solution. 1) The series under study converges pointwise, since sin
𝑥

4𝑘
∼

𝑥

4𝑘
and the inequality is true

⃒⃒⃒⃒
⃒3𝑘 sin 𝑥

4𝑘

⃒⃒⃒⃒
⃒ ≤ 𝑥

(︃
3

4

)︃𝑘

.

2) For the 𝑛0-th remainder of a given functional series at
some point 𝑥0 ∈ (0,+∞) we have

𝑟𝑛0
(𝑥0) =

∞∑︁
𝑘=𝑛0+1

3𝑘 sin
𝑥0

4𝑘
≥ 3𝑛0+1 sin

𝑥0

4𝑛0+1
≥ 3 sin

𝑥0

4𝑛0+1
.
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Solution
found.

3) Then for any 𝑁 ∈ N on (0,+∞) exist

𝑛0 = 𝑁, 𝑥0 = 4𝑛0+1, 𝜀0 = 3 sin 1

such that 𝑟𝑛0
(𝑥0) ≥ 3 sin 1 = 𝜀0 .

It means that

sup
𝑥∈𝑋

⃒⃒
𝑟𝑛(𝑥)

⃒⃒
̸→ 0 at 𝑛 → ∞

and by virtue of Theorem 9.4, the series under study
converges nonuniformly.
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Problem
9.4

Investigate the uniform convergence of a functional series

∞∑︁
𝑘=1

𝑥

1 + 𝑘3𝑥3

on sets: 1) 𝐸1 : 𝑥 ∈ [ 0, 1] ,

2) 𝐸2 : 𝑥 ∈ [ 1,+∞) .

Solution. 1) The series under study converges pointwise on 𝐸1 and 𝐸2,
due to the comparison criterion and the convergence of the

number series
∞∑︀
𝑘=1

1

𝑘3
.
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2) Derivative of the common term of the series

𝑢′
𝑘(𝑥) =

1− 2𝑘3𝑥3

(1 + 𝑘3𝑥3)2
< 0 ∀𝑥 ∈ 𝐸2 .

Therefore, the continuous 𝑢𝑘(𝑥) has a maximum on 𝐸2 at
the point 𝑥 = 1 and the inequality will be true

𝑥

1 + 𝑘3𝑥3
≤

1

1 + 𝑘3
∀𝑥 ∈ 𝐸2 .

From the convergence of the majorizing series
∞∑︀
𝑘=1

1

1 + 𝑘3
.

and the Weierstrass sign we obtain uniform convergence
series under study on 𝐸2 .
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Solution
found.

3) Study on uniform convergence at 𝑥 ∈ 𝐸1. Let’s do it using
the negation of the Cauchy criterion. For any natural number
𝑁 we can take

𝑘0 = 𝑁 ≥ 𝑁 , 𝑝0 = 𝑁 ∈ N and 𝑥0 =
1

𝑁
∈ 𝐸1 ,

such that the inequality holds

⃒⃒⃒⃒
⃒
𝑛0+𝑝0∑︁
𝑘=𝑛0+1

𝑥0

1 + 𝑘3𝑥3
0

⃒⃒⃒⃒
⃒ =

2𝑁∑︁
𝑘=𝑁+1

1

𝑁

1 +
𝑘3

𝑁3

≥

(here we’ll make all the terms the same, replacing each of
them with the smallest term)

≥
2𝑁∑︁

𝑘=𝑁+1

1

𝑁

1

1 +
(2𝑁)3

𝑁3

= 𝑁
1

𝑁

1

1 + 8
=

1

9
= 𝜀0 ,

that is, ⃒⃒⃒⃒
⃒
𝑛0+𝑝0∑︁
𝑘=𝑛0+1

𝑥0

1 + 𝑘3𝑥3
0

⃒⃒⃒⃒
⃒ ≥ 𝜀0 .

The last inequality means that on 𝐸1 by virtue of 1) and
Theorem 9.7, the functional series under study converges
unevenly.
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Problem
9.5

Investigate the uniform convergence of a functional series

∞∑︁
𝑘=1

(−1)𝑘
√
𝑘 + 𝑥2

arctg 𝑥𝑘

on the set 𝑋 : 𝑥 ∈ [ 1,+∞) .

Solution.

Solution
found.

1) Let us first consider the series
∞∑︀
𝑘=1

(−1)𝑘
√
𝑘 + 𝑥2

. Let the

sequences 𝑎𝑘(𝑥) = (−1)𝑘 and 𝑏𝑘(𝑥) =
1

√
𝑘 + 𝑥2

.

It is easy to see that the sequence of partial sums of the series
∞∑︀
𝑘=1

(−1)𝑘 is bounded, and a sequence with a common term

{𝑏𝑘(𝑥)} is monotonic in 𝑘.
It converges uniformly on 𝑋 : 𝑥 ∈ [ 1,+∞) . to the zero
function due to the inequality

1
√
𝑘 + 𝑥2

≤
1
√
𝑘
→ 0 at 𝑘 → ∞ .

Then the series
∞∑︀
𝑘=1

(−1)𝑘
√
𝑘 + 𝑥2

. converges on 𝑋 uniformly

according to the Dirichlet criterion (Theorem 9.8).

2) On the other hand, the sequence arctg 𝑥𝑘 is monotone
in 𝑘 and is limited to 𝑋 .
Therefore, the original functional series will be converge
uniformly on 𝑋 according to Abel’s criterion (Theorem 9.9).
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Problem
9.6

Is it true that

A) row
∞∑︀
𝑘=1

arctg
𝑥

𝑘2
can be differentiated term by

term by R ?

B) This row converges uniformly on R ?

Solution. 1) The series under study obviously converges at the point
𝑥 = 0 .

2) Consider a series whose common term is the derivative
from the common member of the series under study. We have

𝑢′
𝑘(𝑥) =

(︃
arctg

𝑥

𝑘2

)︃′

=
𝑘2

𝑘4 + 𝑥2
≤

1

𝑘2
∀𝑥 ∈ (−∞,+∞) .

Whence it follows that a series composed of derivatives will
converge uniformly on any segment [−𝐶,𝐶] 𝐶 ∈ (0,+∞)
according to the Weierstrass sign.

Then, by Theorem 9.3, the original functional series it is
possible to differentiate ∀𝐶 ∈ (0,+∞) . On the segment
[−𝐶,𝐶] this series will converge uniformly to differentiable
function (due to the arbitrariness of 𝐶 ∈ (0,+∞)) on the
entire real axis.

Therefore, the answer to question A) is yes.
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Solution
found.

3) Consider question B).

Functional sequence {𝑢𝑘(𝑥)} converges pointwise to the
function, identically equal to zero on the entire real axis.

On the other hand, we have

sup
𝑥∈𝑋

⃒⃒
𝑢𝑘(𝑥)

⃒⃒
̸→ 0 at 𝑘 → ∞ .

Indeed, for the functional sequence

{︃
arctg

𝑥

𝑘2

}︃
can always

be found a pair of numbers 𝑘0 ∈ N and 𝑥0 ∈ R such that
𝑥0 = 𝑘20 . This gives

𝑢𝑘0
(𝑥0) = arctg 1 =

𝜋

4
> 0 .

That is, it is not fulfilled Corollary 9.1 — a necessary
condition uniform convergence of the functional series
∞∑︀
𝑘=1

𝑢𝑘(𝑥) .

Hence the answer to question B) is negative.
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Problem
9.7

Calculate

𝐼 =

2𝜋∫︁
0

(︃ ∞∑︁
𝑘=1

sin2 𝑘𝑥

𝑘(𝑘 + 1)

)︃
𝑑𝑥 .

Solution.

Solution
found.

1) The terms of the integrand are continuous on [0, 2𝜋]
functions. In this case ∀𝑥 ∈ [0, 2𝜋] inequality is true⃒⃒⃒⃒

⃒ sin2 𝑘𝑥

𝑘(𝑘 + 1)

⃒⃒⃒⃒
⃒ ≤ 1

𝑘2
.

Then the integrand converges on [0, 2𝜋] uniformly and can
be integrated term by term.

2) Because

2𝜋∫︁
0

sin2 𝑘𝑥 𝑑𝑥 =
1

2

2𝜋∫︁
0

(1− cos 2𝑘𝑥) 𝑑𝑥 = 𝜋 ,

then (check it out for yourself!)

𝐼 = 𝜋

∞∑︁
𝑘=1

1

𝑘(𝑘 + 1)
= 𝜋

∞∑︁
𝑘=1

(︃
1

𝑘
−

1

𝑘 + 1

)︃
= 𝜋 .
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Problem
9.8

Represent function arctg 𝑥 in the form of a functional series
and evaluate the segment, at which it converges.

Solution. 1) The function (arctg 𝑥)′ =
1

1 + 𝑥2
is representable on

𝑥 ∈ (−1, 1) as the sum of an infinitely decreasing geometric
progression

1

1 + 𝑥2
=

∞∑︁
𝑘=1

(−1)𝑘−1𝑥2(𝑘−1) . (9.4)

2) The functional series on the right side of equality
(9.4) is majorized by a number series of the form
∞∑︀
𝑘=1

(−1)𝑘−1𝑟2(𝑘−1) . This series is convergent ∀𝑟 ∈ (−1, 1) .

Then the functional series (9.4) will converge uniformly on
the segment [−𝑟, 𝑟] and equality (9.4) can be integrated term
by term.
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Solution
found.

3) As a result, we come to equality

arctg 𝑥+ 𝐶 =

∞∑︁
𝑘=1

(−1)𝑘−1𝑥2𝑘−1

2𝑘 − 1
.

Integration constant 𝐶 = 0 , since arctg 0 = 0 .

So the function arctg 𝑥 is appeared as functional series

arctg 𝑥 =

∞∑︁
𝑘=0

(−1)𝑘𝑥2𝑘+1

2𝑘 + 1
.

This series converges uniformly on [−𝑟, 𝑟] ∀𝑟 ∈ [ 0, 1) .


