
Many-Dim ANALYSIS & Integral and series Umnov А.Е., Umnov Е.А. Theme04 2024/25г 1

Analysis of functions of several variables
for differentiability

It is convenient to demonstrate the method for studying functions of
several variables for differentiability for the next problem.

Problem
4.1

Examine for differentiability at the origin of functions
𝑓(𝑥, 𝑦) = 3

√︀
𝑥2𝑦2 and 𝑔(𝑥, 𝑦) = 3

√︀
𝑥3 + 𝑦3 .

Solution. 1. First, let’s remember the definition of differentiability (see
theme 03). From there we get the following.
For the function 𝑓(𝑥, 𝑦) at the point ‖𝑥0 𝑦0‖ you need to
answer the question: is the equality true

lim
‖𝑥 𝑦‖→‖𝑥0 𝑦0‖

𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦0) −𝐴
(︀
𝑥− 𝑥0

)︀
−𝐵

(︀
𝑦 − 𝑦0

)︀√︁(︀
𝑥− 𝑥0

)︀2
+
(︀
𝑦 − 𝑦0

)︀2 = 0,

(4.01)

where 𝐴 =
𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0) and 𝐵 =

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0) ?
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2. Consider the function 𝑓(𝑥, 𝑦) at the origin. Here there is
𝑓(0, 0) = 0. According to the rules of differentiation

𝜕𝑓

𝜕𝑥
=

2

3

3

√︃
𝑦2

𝑥
and

𝜕𝑓

𝜕𝑦
=

2

3
3

√︃
𝑥2

𝑦
.

Calculate partial derivatives using these formulas at the
origin obviously not possible. Therefore we use (3.01). We
have

𝜕𝑓

𝜕𝑥
(0, 0) = lim

𝑡→0

𝑓
(︀

0 + 𝑡, 0
)︀
− 𝑓(0, 0)

𝑡
= lim

𝑡→0

3
√
𝑡2 · 02 − 0

𝑡
= 0 .

Similarly we get that
𝜕𝑓

𝜕𝑦
(0, 0) = 0 .

Note also that at the origin

𝑥− 𝑥0 = 𝑥 and 𝑦 − 𝑦0 = 𝑦 .
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3. The condition (4.01) can be written in form

lim
‖𝑥 𝑦‖→‖0 0‖

3
√︀
𝑥2𝑦2 − 0 − 0 · 𝑥− 0 · 𝑦√︀

𝑥2 + 𝑦2
= 0,

or

lim
‖𝑥 𝑦‖→‖0 0‖

3
√︀
𝑥2𝑦2√︀

𝑥2 + 𝑦2
= 0, (4.02)

4. Let us move in formula (4.02) to the polar coordinate
system, making a change of variables{︂

𝑥 = 𝑟 cos𝜙,
𝑦 = 𝑟 sin𝜙.

Then we get

0 ≤
3
√︀
𝑥2𝑦2√︀

𝑥2 + 𝑦2
=

3
√︀
𝑟2 cos2 𝜙 · 𝑟2 sin2 𝜙

𝑟
≤ 3

√
𝑟 ,

from which, by the theorem about «two policemen», due to
𝑟 → 0, justice follows (4.01). So 3

√︀
𝑥2𝑦2 differentiable at the

origin.
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5. Consider the function 𝑔(𝑥, 𝑦) = 3
√︀
𝑥3 + 𝑦3 at the origin.

Here there is 𝑓(0, 0) = 0.
Partial derivatives of this function at the origin will also have
to calculate using formula (3.01).

𝜕𝑓

𝜕𝑥
(0, 0) = lim

𝑡→0

3
√
𝑡3 + 03 − 0

𝑡
= 1 .

Similarly we find
𝜕𝑓

𝜕𝑦
(0, 0) = 1 .

At the origin we have

𝑥− 𝑥0 = 𝑥 and 𝑦 − 𝑦0 = 𝑦 .
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Solution
found.

6. Condition (4.01) has the form

lim
‖𝑥 𝑦‖→‖0 0‖

3
√︀
𝑥3 + 𝑦3 − 𝑥− 𝑦√︀

𝑥2 + 𝑦2
= 0, (4.03)

Let us show that equality (4.03) is not true, using the
negation of Heine’s definition of the limit.
Indeed, if in formula (4.03) we pass to the limit with 𝑡 → 0
along the trajectory {︂

𝑥(𝑡) = 0,
𝑦(𝑡) = 𝑡,

then we get

lim
𝑡→0

3
√

03 + 𝑡3 − 0 − 𝑡
√

02 + 𝑡2
= 0,

At the same time, on the trajectory{︂
𝑥(𝑡) = 𝑡,
𝑦(𝑡) = 𝑡,

for 𝑡 > 0 we will have

lim
𝑡→+0

3
√
𝑡3 + 𝑡3 − 𝑡− 𝑡
√
𝑡2 + 𝑡2

=
3
√

2 − 2
√

2
̸= 0,

This means that equality (4.03) is not true and function
3
√︀

𝑥3 + 𝑦3 non-differentiable at the origin.
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Let us now show that the scheme considered above can be used for a
fairly wide class of tasks.

Problem
4.2

Examine the function for differentiability at the origin

𝑓(𝑥, 𝑦) =

⎧⎨⎩
√

1 + 𝑥𝑦 − 𝑒
𝑥𝑦
2

(𝑥2 + 𝑦2)
3
2

, if 𝑥2 + 𝑦2 ̸= 0 ,

0, if 𝑥2 + 𝑦2 = 0 .

Solution. 1. For the function 𝑓(𝑥, 𝑦) there is 𝑓(0, 0) = 0 . In this case,
at the origin of coordinates

𝑥− 𝑥0 = 𝑥 and 𝑦 − 𝑦0 = 𝑦 .

Let’s calculate the partial derivatives of this function at the
origin by definition 2.01. We have

𝜕𝑓

𝜕𝑥
(0, 0) = lim

𝑡→0

√
1 + 𝑡 · 0 − 𝑒

𝑡·0
2

𝑡(𝑡2 + 02)
3
2

= 0 .

Likewise
𝜕𝑓

𝜕𝑦
(0, 0) = 0 .
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Solution
found.

2. According to the definition of differentiability and the
results obtained at the previous solution step, equality must
be fair

lim
‖𝑥 𝑦‖→‖0 0‖

√
1 + 𝑥𝑦 − 𝑒

𝑥𝑦
2

(𝑥2 + 𝑦2)2
= 0 . (4.04)

If we come to the origin along a trajectory, then the limit
value must be zero.
Let’s check the fulfillment of this condition on the trajectory{︂

𝑥(𝑡) = 𝑡,
𝑦(𝑡) = 𝑡.

We will have according to the Taylor formulas

lim
𝑡→+0

√
1 + 𝑡2 − 𝑒

𝑡2

2

4𝑡4
=

= lim
𝑡→+0

1 +
1

2
𝑡2 −

1

8
𝑡4 − 1 −

1

2
𝑡2 −

1

8
𝑡4 + 𝑜(𝑡4)

4 𝑡4
= −

1

16
̸= 0 .

This means that equality (4.04) does not hold due to the
denial of the definition of the limit according to Heine.
The function under consideration is non-differentiable at the
origin.
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Problem
4.3

Examine the function for differentiability at the origin

𝑓(𝑥, 𝑦) = sin
(︁

3 + 𝑥
2
9 𝑦

6
7

)︁
.

Solution. 1. For this function it is obvious that 𝑓(0, 0) = sin 3 ,

𝑥− 𝑥0 = 𝑥 and 𝑦 − 𝑦0 = 𝑦 .

It is easy to verify that the values of the partial derivatives
of this function at the origin are zero. Indeed, by definition
2.01 we have

𝜕𝑓

𝜕𝑥
(0, 0) = lim

𝑡→0

sin
(︁

3 + 𝑡
2
9 · 0

6
7

)︁
− sin 3

𝑡
= 0 .

It is clear that
𝜕𝑓

𝜕𝑦
(0, 0) = 0 . Note that the use of

differentiation rules here was not possible.
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2. From the definition of differentiability (4.02) and the
obtained estimates it follows that we need to check fulfilling
equality

lim
‖𝑥 𝑦‖→‖0 0‖

sin
(︁

3 + 𝑥
2
9 𝑦

6
7

)︁
− sin 3√︀

𝑥2 + 𝑦2
= 0 . (4.05)

Let us transform condition (4.05) as follows

lim
‖𝑥 𝑦‖→‖0 0‖

2 sin
𝑥

2
9 𝑦

6
7

2
· cos

6 + 𝑥
2
9 𝑦

6
7

2√︀
𝑥2 + 𝑦2

= 0

and note that the estimate is valid⃒⃒⃒⃒
⃒⃒⃒⃒ 2 sin

𝑥
2
9 𝑦

6
7

2
· cos

6 + 𝑥
2
9 𝑦

6
7

2√︀
𝑥2 + 𝑦2

⃒⃒⃒⃒
⃒⃒⃒⃒ ≤ 𝑥

2
9 𝑦

6
7√︀

𝑥2 + 𝑦2
. (4.06)
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Solution
found.

3. Let us go to the right side of inequality (2.11) to the polar
coordinate system, making a change of variables{︂

𝑥 = 𝑟 cos𝜙,
𝑦 = 𝑟 sin𝜙.

Then the assessment will be fair

𝑥
2
9 𝑦

6
7√︀

𝑥2 + 𝑦2
=

𝑟
2
9 cos

2
9 𝜙 · 𝑟 6

7 sin
6
7 𝜙

𝑟
≤ 𝑟

5
63 ,

from which (since 𝑟 → 0) justice follows (4.05).
Thus, we come to the conclusion that considered function
sin
(︁

3 + 𝑥
2
9 𝑦

6
7

)︁
is differentiable at the origin.
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Problem
4.4

Examine the function for differentiability at the origin

𝑓(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
0 at 𝑥2 + 𝑦2 = 0,

𝑒

− 2

𝑥2 + 𝑦2 − 5
4𝑥𝑦 at 𝑥2 + 𝑦2 ̸= 0.

.

Solution. 1. For a given function 𝑓(0, 0) = 0 . We have

𝑥− 𝑥0 = 𝑥 and 𝑦 − 𝑦0 = 𝑦 .

The values of the partial derivatives of this function at
the origin are zero. This follows from definition 3.01. For
example, according to L’Hopital’s rule

𝜕𝑓

𝜕𝑥
(0, 0) = lim

𝑡→0

𝑒

− 2

𝑡2 + 02 − 5
4 𝑡 · 0

𝑡
= lim

𝑢→∞

𝑢

𝑒2𝑢2 = 0 .

Here we put 𝑢 =
1

𝑡
. Same as

𝜕𝑓

𝜕𝑦
(0, 0) = 0 . Note that the

use of differentiation rules in this problem impossible.
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Solution
found.

2. We need to check the equality

lim
‖𝑥 𝑦‖→‖0 0‖

𝑒

− 2

𝑥2 + 𝑦2 − 5
4𝑥𝑦√︀

𝑥2 + 𝑦2
= 0 .

Let’s make the following change of variables (where 𝑟 > 0 )⎧⎪⎨⎪⎩
𝑥 =

cos𝜙

𝑟
,

𝑦 =
sin𝜙

𝑟
.

Then the equality being verified takes the form

lim
‖𝑟 ∀𝜙(𝑟)‖→‖∞∀𝜙‖

𝑟 𝑒

− 2𝑟2

1 −
5

8
sin 2𝜙

= 0 .

It is fair due to the assessment

3

8
≤ 1 −

5

8
sin 2𝜙 ≤

13

8

and L’Hopital’s rules. This means that the function 𝑓(𝑥, 𝑦)
under consideration is differentiable at the origin.
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Differentials of a function of several variables

From Definition 4.02 and Theorem 3.1 it follows that difference of values
of the differentiable function 𝑓(𝑥, 𝑦) for close points ‖𝑥 𝑦‖ and ‖𝑥0 𝑦0‖ is
primarily determined by the amount

𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0)

(︀
𝑥− 𝑥0

)︀
+

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0)

(︀
𝑦 − 𝑦0

)︀
.

This sum depends arbitrarily on ‖𝑥0 𝑦0‖ , but it depends linearly in ∆𝑥 =
𝑥− 𝑥0 and ∆𝑦 = 𝑦 − 𝑦0 .

Since the point ‖𝑥 𝑦‖ is chosen independently from ‖𝑥0 𝑦0‖ , then ∆𝑥
and ∆𝑦 also are independent of ‖𝑥0 𝑦0‖. This allows us to enter new
function of four variables 𝑥0, 𝑦0,∆𝑥 and ∆𝑦 the following type

𝑑𝑓
(︀
𝑥0, 𝑦0,∆𝑥,∆𝑦

)︀
=

𝜕𝑓

𝜕𝑥
(𝑥0, 𝑦0) ∆𝑥 +

𝜕𝑓

𝜕𝑦
(𝑥0, 𝑦0) ∆𝑦 .

Note that here 𝑑𝑓 is not a product, but a symbol indicating this new
function.
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Both points ‖𝑥 𝑦‖ and ‖𝑥0 𝑦0‖ arbitrary, therefore in cases when they
are not included in the same formula at the same time, they can be used
with the same notation ‖𝑥 𝑦‖ .

If we designate ∆𝑓 = 𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦0) and omit the zero indices,
then formula (3.06) for a differentiable function 𝑓(𝑥, 𝑦) will be written like
this

∆𝑓 = 𝑑𝑓
(︀
𝑥, 𝑦,∆𝑥,∆𝑦

)︀
+ 𝑜

(︁√︀
∆𝑥2 + ∆𝑦2

)︁
.

Moreover, for independent variables 𝑥 and 𝑦 we will assume by definition
that ∆𝑥 = 𝑑𝑥 and ∆𝑦 = 𝑑𝑦.

Then you can give

Definition
4.1

Function of four variables, arbitrarily depends on 𝑥 and
𝑦, and linear in 𝑑𝑥 and 𝑑𝑦

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) 𝑑𝑥 +

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑦 . (4.07)

It is called first differential or, simply, differential of
function 𝑓(𝑥, 𝑦) at point ‖𝑥 𝑦‖ .
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If we fix the values of 𝑑𝑥 and 𝑑𝑦, then 𝑑𝑓 can be considered as an
ordinary function of two variables and we can create for it the first
differential.

In other words,

𝑑(𝑑𝑓) =
𝜕

𝜕𝑥

(︃
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) 𝑑𝑥 +

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑦

)︃
𝛿𝑥+

+
𝜕

𝜕𝑦

(︃
𝜕𝑓

𝜕𝑥
(𝑥, 𝑦) 𝑑𝑥 +

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) 𝑑𝑦

)︃
𝛿𝑦 ,

where 𝛿𝑥 and 𝛿𝑦 are differentials of independent variables at the second
differentiation.

Since we can (by definition) take 𝛿𝑥 = 𝑑𝑥 and 𝛿𝑦 = 𝑑𝑦, then the formula
for 𝑑(𝑑𝑓) and, according to the rules of differentiation, takes the form

𝑑2𝑓 =
𝜕2𝑓

𝜕𝑥2
𝑑𝑥2 + 2

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑓

𝜕𝑦2
𝑑𝑦2 . (4.08)

Here we assumed that the second mixed derivatives for the function 𝑓(𝑥, 𝑦)
are continuous at the point ‖𝑥 𝑦‖. We also introduced the notation 𝑑(𝑑𝑓) =
𝑑2𝑓 .
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Let’s give

Definition
4.2

Function of four variables 𝑑2𝑓, arbitrarily dependent
from 𝑥 and 𝑦 and being a quadratic form of 𝑑𝑥 and
𝑑𝑦, called second differential function 𝑓(𝑥, 𝑦) at point
‖𝑥 𝑦‖ .

Arguing similarly, in the conditions of existence continuous partial
derivatives of the appropriate order, it is possible to define differentials of
higher orders than the second. So for the function 𝑓(𝑥, 𝑦) the differential
of order 𝑚 has the form

𝑑𝑚𝑓 =

𝑚∑︁
𝑘=0

𝐶𝑘
𝑚

𝜕𝑚𝑓

𝜕𝑥𝑚−𝑘𝜕𝑦𝑘
𝑑𝑥𝑚−𝑘𝑑𝑦𝑘 .

Problem
4.5

Find the first and second differentials of the function
𝑓(𝑥, 𝑦) = sin

(︀
𝑥2 + ln 𝑦

)︀
at point ‖ 0 1‖.
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Solution.

Solution
found.

1. Find the partial derivatives and their values at the point
‖ 0 1‖. We have

𝜕𝑓

𝜕𝑥
= cos

(︀
𝑥2+ln 𝑦

)︀
·2𝑥 = 0 and

𝜕𝑓

𝜕𝑦
= cos

(︀
𝑥2+ln 𝑦

)︀
·
1

𝑦
= 1 .

For the second derivatives we find

𝜕2𝑓

𝜕𝑥2
= − sin

(︀
𝑥2 + ln 𝑦

)︀
·4𝑥2 + 2 cos

(︀
𝑥2 + ln 𝑦

)︀
·2𝑥 = 2 ,

𝜕2𝑓

𝜕𝑥𝜕𝑦
= −2𝑥

(︃
sin
(︀
𝑥2 + ln 𝑦

)︀
·
1

𝑦

)︃
= 0 ,

𝜕2𝑓

𝜕𝑦2
= −

1

𝑦

(︀
sin
(︀
𝑥2 + ln 𝑦

)︀)︀
− cos

(︀
𝑥2 + ln 𝑦

)︀ 1

𝑦2
= −1 .

2. From where, according to (4.07) and (4.08), we get

𝑑𝑓 = 𝑑𝑦 and 𝑑2𝑓 = 2𝑑𝑥2 − 𝑑𝑦2 .
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In some cases, for example when the function 𝑓(𝑥, 𝑦) is specified
implicitly, you can search for differentials using the rules of differentiation
without finding partial derivatives. This demonstrates

Problem
4.6

Find the first and second differentials of the function 𝑓(𝑥, 𝑦)
given by the equation

𝜋

4
+ 𝑓(𝑥, 𝑦) −

𝑥2

2
−

𝑦2

2
− arctg 𝑓(𝑥, 𝑦) = 0 (4.09)

at point ‖ 1 1‖ , if it is known that 𝑓(1, 1) = 1 .
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Solution. 1. First you need to check that at the given point function
𝑓(𝑥, 𝑦) has the value 1. Indeed,

𝜋

4
+ 1 −

1

2
−

12

2
− arctg 1 = 0 .

2. We find the first differential by formally differentiating
(4.09). We have at a given point

𝑑𝑓 − 𝑥𝑑𝑥− 𝑦𝑑𝑦 −
𝑑𝑓

1 + 𝑓2
= 0 (4.10)

or

𝑑𝑓 − 𝑑𝑥− 𝑑𝑦 −
𝑑𝑓

2
= 0 =⇒ 𝑑𝑓 = 2𝑑𝑥 + 2𝑑𝑦 .
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Solution
found.

3. We find the second differential by differentiating (4.10)
and counting (according to the definition of the second
differential), that 𝑑𝑥 and 𝑑𝑦 (but not 𝑑𝑓 !) are constants. We
get

𝑑(𝑑𝑓) − 𝑑𝑥 · 𝑑𝑥− 𝑥 · 𝑑(𝑑𝑥) − 𝑑𝑦 · 𝑑𝑦 − 𝑦 · 𝑑(𝑑𝑦)−

−
𝑑(𝑑𝑓) · (1 + 𝑓2) − 𝑑𝑓 · 2𝑓𝑑𝑓

(1 + 𝑓2)2
= 0 .

Since 𝑑(𝑑𝑥) = 0 and 𝑑(𝑑𝑦) = 0, then

𝑑2𝑓 − 𝑑𝑥2 − 𝑑𝑦2 −
𝑑2𝑓

1 + 𝑓2
+

2𝑓(𝑑𝑓)2

(1 + 𝑓2)2
= 0 .

The first differential is 𝑑𝑓 = 2𝑑𝑥 + 2𝑑𝑦 . Then

𝑑2𝑓 − 𝑑𝑥2 − 𝑑𝑦2 −
1

2
𝑑2𝑓 + 2(𝑑𝑥 + 𝑑𝑦)2 = 0 .

It gives
𝑑2𝑓 = 2𝑑𝑥2 − 8𝑑𝑥𝑑𝑦 − 2𝑑𝑦2
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Taylor formula for a function of several variables

Let function 𝑓(𝑥, 𝑦) have continuous partial derivatives in the
neighborhood of the point ‖𝑥0 𝑦0‖ up to order 3 inclusive. Then it can
be shown that the formula

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) +

𝑁∑︁
𝑚=1

1

𝑚!
𝑑𝑚𝑓 + 𝑜

(︂(︁√︀
𝑑𝑥2 + 𝑑𝑦2

)︁𝑁)︂
.

(commonly called 𝑁 -th order Taylor formula) is valid.

Particular forms of this formula are for 𝑁 = 1

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) +
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 + 𝑜

(︁√︀
𝑑𝑥2 + 𝑑𝑦2

)︁
.

and for 𝑁 = 2

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) +
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦+

+
𝜕2𝑓

𝜕𝑥2
𝑑𝑥2 + 2

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕2𝑓

𝜕𝑦2
𝑑𝑦2 + 𝑜

(︀
𝑑𝑥2 + 𝑑𝑦2

)︀
.

(4.11)
They are often used in applications for local approximation of functions of
several variables power functions of the first and second orders.

Typically this approximation is used for studying the properties of the
function 𝑓(𝑥, 𝑦) in a small neighborhood of the point ‖𝑥0 𝑦0‖ .
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An example of using the Taylor formula is

Problem
4.7

Represent with the Taylor formula of order 𝑁 = 2 function

𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦

in the vicinity of points A) ‖0 0‖ and В) ‖1 1‖ .

Solution. 1. This problem can be solved by two methods. In the first of
them we find the partial derivatives up to the second order
inclusive. We have

𝜕𝑓

𝜕𝑥
= 3𝑥2 − 3𝑦 and

𝜕𝑓

𝜕𝑦
= 3𝑦2 − 3𝑥 .

Where do we find it from?

𝜕2𝑓

𝜕𝑥2
= 6𝑥 ,

𝜕2𝑓

𝜕𝑥𝜕𝑦
= −3 ,

𝜕2𝑓

𝜕𝑦2
= 6𝑦 .
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Then, according to (4.07) and (4.08), we obtain for the case
A), putting ∆𝑥 = 𝑥, ∆𝑦 = 𝑦 and taking into account that
𝑓(0, 0) = 0 approximation

𝑓
(︀
𝑥, 𝑦
)︀

= −3∆𝑥∆𝑦 + 𝑜
(︀
∆𝑥2 + ∆𝑦2

)︀
.

Similarly, for case B), putting

∆𝑥 = 𝑥− 1, ∆𝑦 = 𝑦 − 1

and taking into account, that 𝑓(1, 1) = −1 , we find

𝑓
(︀
𝑥, 𝑦
)︀

= −1 + 6∆𝑥2 − 3∆𝑥∆𝑦 + 6∆𝑦2 + 𝑜
(︀
∆𝑥2 + ∆𝑦2

)︀
.
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2. The second way to solve the problem is based on the
following fact.
If a representation of a function by the Taylor formula exists,
then it is the only one.

Then, when replacing the variables ∆𝑥 = 𝑥 and ∆𝑦 = 𝑦 and
the use of equality

∆𝑥3 + ∆𝑦3 = 𝑜
(︀
∆𝑥2 + ∆𝑦2

)︀
in case A) we have

𝑓(𝑥, 𝑦) = −3𝑥𝑦 + 𝑥3 + 𝑦3 = −3∆𝑥∆𝑦 + 𝑜
(︀
∆𝑥2 + ∆𝑦2

)︀
.

In case B) we use a change of variables of a different type
∆𝑥 = 𝑥 − 1 And ∆𝑦 = 𝑦 − 1 . As a result, this gives us
𝑥 = ∆𝑥 + 1, 𝑦 = ∆𝑦 + 1 and correspondingly,

𝑓(𝑥, 𝑦) =
(︀
∆𝑥 + 1

)︀3
+
(︀
∆𝑦𝑥 + 1

)︀3 − 3
(︀
∆𝑥 + 1

)︀(︀
∆𝑦 + 1

)︀
=

after opening the parentheses and bringing similar terms

= −1 + 6∆𝑥2 − 3∆𝑥∆𝑦 + 6∆𝑦2 + 𝑜
(︀
∆𝑥2 + ∆𝑦2

)︀
.
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Fig. 2A Fig. 2B

Fig.3
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Solution
found.

3. Let us now use the obtained approximations to find out
nature of behavior in small neighborhoods of points A) and
B).
Note that the approximation graphs in coordinates ‖∆𝑥∆𝑦‖
(up to values of the order of smallness 𝑜

(︀
∆𝑥2 + ∆𝑦2

)︀
) are

second order surfaces.
Moreover, in case A) this surface there is a hyperbolic
paraboloid, dot ‖0 0‖ saddle, the gradient vector in it is zero,
but there is no extremum here.
In case B) the second-order surface is also a paraboloid, but
elliptical. At the point ‖1 1‖ gradient vector is null and there
is a local minimum here.
The noted properties are illustrated in Fig. 2A and 2B. In
Fig. Figure 3 shows the general picture of the isolines of the
function under consideration 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦 .


