Space R^{n}

The term function denotes a three-component object, consisting of two numerical sets: domain of definition X and domain of values Y, as well as a special rule $f(\ldots)$.

The rule matches
for every number from the domain of definition $x \in X$ a single number from a set of values $y \in Y$,
so that $y=f(x)$.

Fig.1-1. Function definition

It is also possible that the value of a function depends on several numeric arguments. In this case, we can introduce the concept functions of several variables. For example, like this:

We will say that a function of several variables is given if some rule is specified. By this rule,
for every fixed set of ordered real numbers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ from domain of definition
a single number from domain of values is assigned.
We will denote a function of many variables as follows $f(x)$ or, in more detail, like $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Here x (without subscript) denotes the entire set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Note that graphically this dependence depicted by the same figure. However, the points of the set X are no longer numbers.

This definition is similar to the definition of a function depending on one variable. It can be used just as effective if you overcome the following difficulty.

For a function of one variable $f(x)$ let's remember the definitions of limit, continuity and derivative of a function at a point.

They require evaluating the differences between the values of both a function and its argument. For this purpose, difference modules of numbers are used: $\left|x_{(1)}-x_{(2)}\right|$ and $\left|f\left(x_{(1)}\right)-f\left(x_{(2)}\right)\right|$.

In the case of a function of many variables, the difference modulus is only suitable to estimate the difference between function values. And the question arises: how to quantify the closeness of two sets of ordered numbers, such as $\left\{x_{1(1)}, x_{2(1)}, \ldots, x_{n(1)}\right\}$ and $\left\{x_{1(2)}, x_{2(2)}, \ldots, x_{n(2)}\right\} .{ }^{1}$

[^0]One possible way to quantify the proximity of such sets is as follows.
Consider the collection of all possible sets consisting of n ordered real numbers. We will call each such set element and write it as a string $\left\|x_{1} x_{2} \ldots x_{n}\right\|$. We will denote the entire set of elements as R^{n}.

Let us transform R^{n} into an n-dimensional linear space. To do this, we will use in R^{n} following rules:

- equality of elements:

$$
\left\|x_{1} x_{2} \ldots x_{n}\right\|_{(1)}=\left\|x_{1} x_{2} \ldots x_{n}\right\|_{(2)} \Longleftrightarrow\left\{\begin{array}{c}
x_{1(1)}=x_{1(2)}, \\
x_{2(1)}=x_{2(2)}, \\
\ldots \\
x_{n(1)}=x_{n(2)} .
\end{array}\right.
$$

- summation of elements:

$$
\begin{aligned}
& \left\|x_{1} x_{2} \ldots x_{n}\right\|_{(1)}+\left\|x_{1} x_{2} \ldots x_{n}\right\|_{(2)}= \\
= & \| x_{1(1)}+x_{1(2)} \quad x_{2(1)}+x_{2(2)}
\end{aligned} \ldots \quad x_{n(1)}+x_{n(2)} \| .
$$

- multiplying a number by an element:

$$
\lambda\left\|x_{1} x_{2} \ldots x_{n}\right\|=\left\|\lambda x_{1} \lambda x_{2} \ldots \lambda x_{n}\right\| .
$$

In a linear space there are no metric characteristics for its elements. For example, such as: length, distance or angle value.

However, they can be created if you turn R^{n} in Euclidean space. To do this, we introduce in R^{n} new operation scalar product of elements $x=$ $\left\|x_{1} x_{2}, \ldots x_{n}\right\|$ and $y=\left\|y_{1} y_{2}, \ldots y_{n}\right\|$. This operation matches pair of elements x and y with a number denoted as (x, y) according to the formula

$$
(x, y)=\sum_{k=1}^{n} x_{k} y_{k}
$$

Let, for example, in $R^{4} x=\|5,-2,0,3\|$ and $y=\|-1,-1,7,2\|$. Then

$$
(x, y)=5 \cdot(-1)+(-2) \cdot(-1)+0 \cdot 7+3 \cdot 2=3 .
$$

The scalar product allows you to use for elements in R^{n} numerical (metric) characteristics such as:

$$
\text { - norm (length) of element } x \quad|x|=\sqrt{(x, x)}=\sqrt{\sum_{k=1}^{n} x_{k}^{2}} \text {, }
$$

- distance between elements x and y

$$
\begin{equation*}
\rho(x, y)=|x-y|=\sqrt{(x-y, x-y)}=\sqrt{\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2}} . \tag{1.1}
\end{equation*}
$$

Notice that element $x-y$ exists in R^{n} for any pair elements x and y. Indeed, in R^{n} (as in a linear space) element $x-y$ is the sum of x and $(-1) y$.

Moreover, in Euclidean space Euclidean space, for two arbitrary elements x and y the following relations are valid:

- Cauchy-Bunyakovsky inequality $\quad|(x, y)| \leq|x||y|$, which in R^{n} has the form

$$
\left|\sum_{k=1}^{n} x_{k} y_{k}\right| \leq \sqrt{\left(\sum_{k=1}^{n} x_{k}^{2}\right)\left(\sum_{k=1}^{n} y_{k}^{2}\right)}
$$

- triangle inequality $|x+y| \leq|x|+|y|$, that in R^{n} there will be

$$
\sqrt{\sum_{k=1}^{n}\left(x_{k}+y_{k}\right)^{2}} \leq \sqrt{\sum_{k=1}^{n} x_{k}^{2}}+\sqrt{\sum_{k=1}^{n} y_{k}^{2}}
$$

Let us present (for reference) some definitions of special elements and subsets in R^{n}.

Definition	The set of elements x such that $\rho\left(x, x_{0}\right) \leq r$, called
1.1	ball or neighborhood radius r centered at x_{0}.

Definition A neighborhood of the element x_{0} is called 1.2 punctured, if it consists of elements x_{0}, for which $0<\rho\left(x, x_{0}\right) \leq r$.

Definition \quad The element x_{0} is called interior for the set $M \subset$ 1.3 R^{n}, if $x_{0} \in M$ together with some ball of non-zero radius, centered at x_{0}.
$\begin{array}{ll}\text { Definition } & \text { The set } M \text { is called open, if all its elements are } \\ 1.4 & \text { internal. }\end{array}$

Definition	The element x_{0} is called limit point of some set M if
1.5	in any neighborhood of this element there is at least
one element of M.	

The limit point of a set M may or may not belong to M.

Definition The set M is called bounded, if it is contained in 1.6 some ball with non-zero radius.

Definition The set M is called closed, if it contains all its limit 1.7 points.

Definition The element x is called boundary, if in any of its 1.8 neighborhood exist as points belonging to M, and not belonging to this set.

$\begin{aligned} & \text { Definition } \\ & 1.9 \end{aligned}$	They say that set of elements $\\|x(t)\\|=\left\\|x_{1}(t) x_{2}(t) \ldots x_{n}(t)\right\\|$ forms a line in R^{n}, if $x_{k}(t) \forall k=\overline{1, n}$ are continuous at $t \in[\alpha, \beta] \subset \mathbb{R}$ functions.
$\begin{aligned} & \text { Definition } \\ & 1.10 \end{aligned}$	The set M is called connected, if any two of its points can be connected by a line, entirely owned by M.
$\begin{aligned} & \text { Definition } \\ & 1.11 \end{aligned}$	An open and connected set is called a domain. A closed and bounded set is called compact.
$\begin{aligned} & \text { Definition } \\ & 1.12 \end{aligned}$	Level of a function $f(x)$ is a collection of elements in R^{n} such that $f(x)=c \in \mathbb{R}$. In the case $n=2$ we talk about level line, and in the case $n=3$ the term level surface is used.

For small values of n it is customary to use index-free notation for the components of elements in R^{n}.

Example 1.1.1. Find for $z=f(x, y)=e^{2 x y}-e^{x y}+2$ domain of definition, domain of value and level lines

Solution. 1. In this case $n=2$ and all operations used in the formula defining the function are satisfiable for any x and y, therefore the domain of definition there is an open set of the form $x \in(-\infty,+\infty)$ and $y \in(-\infty,+\infty)$.
2. Since the equality is true

$$
z=f(x, y)=\left(e^{x y}-\frac{1}{2}\right)^{2}+\frac{7}{4}
$$

then the range of values will be the half-interval for which $z \in\left[\frac{7}{4},+\infty\right)$.
3. From

$$
\left(e^{x y}-\frac{1}{2}\right)^{2}+\frac{7}{4}=\text { const }
$$

we obviously have $x y=$ const. Then the level lines for this function will be hyperbolas.

Limit of a function of several variables

In the space R^{n} we give

Definition	We will say that in R^{n} is given the sequence elements		
1.13	$\left\{x_{(k)}\right\}$, if for every natural number k is uniquely defined some element		
$\qquad\left\\|x_{1(k)} x_{2(k)} \ldots x_{n(k)}\right\\| \in R^{n}$.			

Note that in this case each component of $\left\{x_{(k)}\right\}$, (that is, $\left\{x_{j(k)}\right\} \forall j=$ $\overline{1, n}$,$) is a number sequence in \mathbb{R}$.

Now, using the metric $\rho(x, y)$ to estimate the proximity of x and y, we give

Definition	The element $a \in R^{n}$ is called the limit of the
1.14	sequence $\left\{x_{(k)}\right\}$, If
	$\forall \varepsilon>0 \quad \exists N_{\varepsilon} \in \mathbb{N}$ such that $\forall n \geq N_{\varepsilon} \rho\left(x_{n}, a\right)<\varepsilon$.

Symbolically it is denoted in R^{n} as $\quad \lim _{k \rightarrow \infty} x_{(k)}=a$.
As is easy to see, this definition repeats the definition of the limit of a number sequence for \mathbb{R} in which $\left|x_{n}-a\right|$ is replaced by $\rho\left(x_{n}, a\right)$.

Now we can give the following definition of the limit of a function of several variables

Definition 1.15	The number A is called limit of function $f(x)$ at
(according to Heine)	the point $a \in R^{n}$,
If for any sequence $\left\{x_{(k)}\right\}$ such that	
$\lim _{k \rightarrow \infty} x_{(k)}=a, \quad x_{(k)} \neq a$,	
we have $\lim _{k \rightarrow \infty} f\left(x_{(k)}\right)=A$.	

And also, equivalent to definition 1.15,

Definition	The number A is called limit of function $f(x)$ at
1.16 (according to the point $a \in R^{n}$, Cauchy) If $\forall \varepsilon>0 \quad \exists \delta_{\varepsilon}>0$ such that for all x, satisfying $0<\rho(x, a)<\delta_{\varepsilon}$, we have $\|f(x)-A\|<\varepsilon$.	

Definitions 1.15 and 1.16 may be written as follows: $\lim _{x \rightarrow a} f(x)=A$, or in expanded form

$$
\lim _{\left\|x_{1}, \ldots, x_{n}\right\| \rightarrow a_{1}, \ldots, a_{n} \|} f\left(x_{1}, \ldots, x_{n}\right)=A
$$

Limits of the form 1.15 (or 1.16) are called limits at a point (or, simply, limits).

In addition to them, for functions of several variables one can define iterated limits. Here the limit is taken sequentially for each of all variables, considering the rest as parameters.

For example, with $n=2$ for the function $f(x, y)$ you can specify two iterated limits of the form

$$
\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right) \quad \text { and } \quad \lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)
$$

For a function depending on n variables, the number of different iterated limits equals n !.

Note that in general the value of the iterated limit may be ambiguous. For example, for the function $u(x, y)=\frac{x-y}{x+y}$ we have

$$
\lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} \frac{x-y}{x+y}\right)=-1 \quad \text { и } \quad \lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} \frac{x-y}{x+y}\right)=1
$$

While $\lim _{\|x, y\| \rightarrow\|0,0\|} \frac{x-y}{x+y} \quad$ doesn't exist at all.

Example 1.1.2. Show that for the function

$$
u(x, y)=\left\{\begin{aligned}
\frac{x^{k} y}{x^{2}+y^{2}}, & \text { if } \\
0, & x^{2}+y^{2} \neq 0 \\
\text { if } & x^{2}+y^{2}=0
\end{aligned}\right.
$$

there is a limit at the origin for $k=2$ and does not exist for $k=1$.

Solution. 1. Let $k=2$. Apply definition 1.16 (according to Cauchy) and show that

$$
\lim _{\|x, y\| \rightarrow\|0,0\|} \frac{x^{2} y}{x^{2}+y^{2}}=0
$$

Indeed, $\forall \varepsilon>0$ we can take $\delta_{\varepsilon}=\varepsilon$, for which

$$
|x| \leq \rho(x, y)=\sqrt{x^{2}+y^{2}}<\delta_{\varepsilon}=\varepsilon \quad \forall y
$$

On the other hand, due to Cauchy's inequality,

$$
\left|\frac{x^{2} y}{x^{2}+y^{2}}-0\right|=|x| \frac{|x||y|}{x^{2}+y^{2}} \leq \frac{|x|}{2}<\varepsilon
$$

on any trajectory leading to the origin.
2. Now we use another solution method. Let's move to the polar coordinate system, then from

$$
\left\{\begin{array}{c}
x=r \cos \varphi \\
y=r \sin \varphi
\end{array}\right.
$$

we have

$$
\frac{x^{2} y}{x^{2}+y^{2}}=\frac{r^{2} \cos ^{2} \varphi r \sin \varphi}{r^{2} \cos ^{2} \varphi+r^{2} \sin ^{2} \varphi}=r \cos ^{2} \varphi \sin \varphi
$$

But this expression tends to zero, since on any trajectory leading to the origin of coordinates, that is, $\forall \varphi(r)$ holds $r \rightarrow 0$.

3 . Let us now consider the case with $k=1$. It's more convenient to use here definition (more precisely, the negation of definition) according to Heine.

Indeed, in order for the function $u(x, y)$ had no limit at the point $\left\|x_{0} y_{0}\right\|$, is enough find two different sequences $\left\{\left\|x_{(1) m} y_{(1) m}\right\|\right\}$ and $\left\{\left\|x_{(2) m} y_{(2) m}\right\|\right\}, \|$ converging in R^{2} as $m \rightarrow \infty$ to the limit point, on which number sequences

$$
u\left(x_{(1) m}, y_{(1) m}\right) \quad \text { and } \quad u\left(x_{(2) m}, y_{(2) m}\right)
$$

have different limits.

For Example 1.1.2, such sequences can be: converging to the origin,
sequences of the form $\left\{\left\|\frac{1}{m} 0\right\|\right\}$ and $\left\{\left\|\frac{1}{m} \frac{1}{m}\right\|\right\}$.
For the first of them, we go to the origin along the $O x$ axis. For this sequence it will be

$$
\lim _{m \rightarrow \infty} \frac{\frac{1}{m} \cdot 0}{\frac{1}{m^{2}}+0^{2}}=0
$$

For the second, we go to the coordinate coordinates along the bisector of the first coordinate angle In this case we have

$$
\lim _{m \rightarrow \infty} \frac{\frac{1}{m} \cdot \frac{1}{m}}{\frac{1}{m^{2}}+\frac{1}{m^{2}}}=\frac{1}{2}
$$

Therefore, according to the negation of Heine's definition of the limit, function specified in the formulation of Example 1.1.2, with $k=1$ at the origin of the space R^{2}, has no limit.

The existence of a limit over an infinite number of trajectories does not imply the existence of a limit for all of them.

Example 1.1.3. Show that for the function

$$
u(x, y)=x^{2} e^{y-x^{2}}
$$

1. There is a limit at $\|x y\| \rightarrow\|\infty \infty\|$ on the set T, of all rays emanating from the origin.
2. The limit $u(x, y)$ at $\|x y\| \rightarrow\|\infty \infty\|$ does not exist.

Solution. 1. The set T can be parametric given like this:

$$
\left\{\begin{array}{l}
x(t)=\alpha t \\
y(t)=\beta t
\end{array}\right.
$$

where $\alpha^{2}+\beta^{2}>0$.
2. On a ray with fixed α and β choose a limit sequence of the form

$$
\left\{\begin{array}{l}
x_{m}=m \alpha \\
y_{m}=m \beta
\end{array}\right.
$$

Moreover, it is obvious that for $\alpha=0$

$$
\lim _{m \rightarrow \infty} u\left(x_{m}, y_{m}\right)=0
$$

If $\alpha \neq 0$, then

$$
\lim _{m \rightarrow \infty} u\left(x_{m}, y_{m}\right)=(m \alpha)^{2} e^{m \beta-(m \alpha)^{2}}=0
$$

which can be verified by applying, for example, L'Hopital's rule.
So, on the set T the limit of the function under consideration is 0 .
3. Let us now show that there is no limit for the function under consideration. To do this, we choose a limit sequence of the form:

$$
\left\{\begin{array}{l}
x_{m}=m \alpha, \\
y_{m}=m^{2} \beta .
\end{array}\right.
$$

The points of this sequence lie on a parabola, and the exponent for each point is zero Then it is obvious that

$$
\lim _{m \rightarrow \infty} u\left(x_{m}, y_{m}\right)=+\infty
$$

And the limit of the function in question does not exist, due to the negation of the definition of the limit according to Heine.

[^0]: ${ }^{1}$ Let's agree that the subscript without parentheses is the number variable in the set, and the subscript in parentheses is the number of the variable set.

