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Quadratic forms in Euclidean space 
 
 

Let us consider the problem of finding a basis in nE  which a quadratic form has a diagonal or 
standard form. 

 
Recall: earlier we considered this problem in  an arbitrary finite-dimensional space n , where 

it always had a solution, and, moreover, a non-unique one. In a finite-dimensional Euclidean 
space, as we will see, there are alternative, in many cases more effective methods for solving it. 

 
As we know, any quadratic form in n -dimensional space is completely and uniquely de-

scribed by a symmetric matrix and in an arbitrary basis },...,,{ 21 nggg  has the form 
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The matrix of a quadratic form depends on the choice of basis and changes according to the 

following rule 

 SS
gg




T
,               (1) 

 

where S  is the transition matrix from the original basis to the  new one },...,,{ 21 nggg  . 
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Now let the quadratic form )(x  be defined in the original orthonormal basis },...,,{ 21 neee  of 

the Euclidean space nE . Let us try to find in nE  another orthonormal basis },...,,{ 21 neee  in 

which the form has a diagonal form. 

 
 
 

Let us first note that in mathematical texts or statements, expressions such as "positive defi-
nite matrix", "eigenvectors of a matrix", etc. are often used (for the sake of brevity or because of 
contextual obviousness). These expressions are incorrect from a formal point of view, since the 
matrices are attributed properties that they do not possess. 

 
Sign definiteness is a property of a quadratic form, while eigenvalues and eigenvectors are 

present in linear transformations. The reason for these natural "clauses" is that for both linear 
transformations and quadratic forms, the coordinate representations are square matrices. 

 
Indeed, if we have some matrix, then by its appearance it is impossible to say whether this 

matrix is a record in nE  a linear transformation, a matrix of quadratic form, or a representation 
of some other object. For correctness, a more detailed description is required. 
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However, like everything in our world, it has a "reverse side of the coin", the noted ambiguity 

of terms can be used "for good". 
 
 

We will assume that we have excellent observation and a wonderful memory. Thanks to 
which, we will first recall that 

self-conjugate linear transformations in nE  have an orthonormal basis consisting of its 
eigenvectors, in which the transformation matrix is diagonal. 

 
On the other hand, the matrix of a quadratic form )(x  is symmetric and in the original 

orthonormal basis can be considered as the matrix of a self-conjugate transformation )(ˆ x , 
which is usually called conjugate to the form )(x . 

 
 

So, we have two objects different in nature: a quadratic form )(x  and an conjugate trans-

formation )(ˆ x , which have (by construction) the same matrix in the original orthonormal basis. 
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Now let's remember what happens to the matrices of these objects when replacing one or-

thonormal basis with another. 
 
By virtue of (1), for a quadratic form we have 
 
 

SS
ee

 T

'   
.         

 
 

But for a linear transformation the rule of change is different: 
 
 

SS
ee


 ˆˆ 1

'
.                (2) 

 
 

In this situation, we can "help the grief" thanks to our excellent memory. We remember that 
the matrices of transition from one orthonormal basis to another orthonormal basis are (and only 
they!) orthonormal matrices. 

And these matrices satisfy the equality 
T1

SS 
. But then the matrices are the same in 

the new orthonormal basis, since from (2) we have 
''

ˆ
ee

 . The game is over! 
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Let us summarize our achievements in the form of a small but important generalization. Let 

us have in n  the matrix of a quadratic form in the standard basis },...,,{ 21 nggg . 

 
Let us transform (this is our right!)  n  into nE  , introducing a scalar product using the Gram 

matrix, which is the identity matrix. Then the basis },...,,{ 21 nggg  will become orthonormal and 

the symmetric matrix 
g

  can be taken as the matrix of the conjugate transformation. 

 
Let us construct a basis from the eigenvectors of this transformation, in which its matrix will 

be diagonal (with eigenvalues )(ˆ x  on the main diagonal). With this basis we remain in n , 

forgetting about nE  (this is, again, our right!) 
 
 
It follows from our reasoning that 
 

Theorem 1. For every quadratic form defined in an orthonormal basis, there exists an 
orthonormal basis in which this form has a diagonal form. 
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Let's consider the following example (which we solved earlier in 3 ). 
 
 

Task 9-01.  Using the orthogonal operator, reduce to diagonal form in 3E  quadratic form  
 )(x 323121 222   . 

 
 
Solution: 1⁰. Let the original ONB consist of elements },,{ 321 eee  with 

,
0
1
0

,
0
0
1

21  ee  .

1

0

0

3 e  

 
 
We will restore its matrix from the quadratic form   )(x 323121 222      . 

We will obtain 

011

101

110




e . 
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2.  Let us consider the constructed symmetric matrix as defining a self-conjugate linear operator 

̂  in 3E  and find its eigenvalues. 
 

We compose and solve the characteristic: 
 
 

0

11

11

11

det 









       or       0233    . 

 
 

It has roots: 1,2 3,21   , which are the eigenvalues. 

 
 
Note that if we are only interested in the diagonal form of the quadratic form, then we can 
write it now: 
 

222
3212)(   x  

 
 

and finish solving the problem. 
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3.  In the case where it is also required to find a diagonal basis for )(x , that is, to find a ma-

trix S  – the transition matrix from the original ONB to the desired one, it is necessary to 

first find the eigenvectors of the operator ̂ . 
 

For 2  we have 

0

0

0

211

121

112

3

2

1









, which gives 







.2

,2

321

321
 Taking 3  as 

a free unknown, we obtain the eigenvector 

1

1

1

1


f . 

 
The multiplicity of the eigenvalue 1  is 2, which means that it must correspond to two 
linearly independent (but not necessarily orthogonal!) eigenvectors. The components of the 
eigenvector must satisfy the following system of equations: 
 
 

0

0

0

111

111

111

3

2

1











 , 

 
 

of which only one is independent 321   .  
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The general solution of this system will be of the form 




,

1

0

1

0

1

1

3

2

1

. Each 

column of the form 

0

1

1

 or 

1

0

1

 is orthogonal , but they themselves are not orthogonal to 

each other. 
 
 
 

Therefore, a pair of orthogonal eigenvectors corresponding to 1 , we form from the first 
fundamental solution and the orthogonal linear combination of the first and second. 
 

The condition of orthogonality of columns  

0

1

1

 and 




,  is obviously 02   . 

Whence, for example, choosing and , we obtain  

0

1

1

2 f  and 

2

1

1

3




f .  

 
 
 
The condition of orthogonality of columns and is obviously . Whence, for example, choos-
ing and , we obtain and 
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4. The set of elements },,{ 321 fff  is an orthogonal but non-normalized basis in 3E . 

 
To construct an orthonormalized basis, we normalize each of the elements of the basis 

},,{ 321 fff . As a result, we obtain a matrix (orthogonal!) 
 

6

2
0

3

1
6

1

2

1

3

1
6

1

2

1

3

1





S  

 
 

(transition from the “old” basis },,{ 321 eee  to the “new” basis },,{ 321 eee  ), the columns of 

which are coordinate representations of the elements of the basis },,{ 321 eee   by the basis 

},,{ 321 eee  
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We have already noted that this matrix is orthogonal (show it yourself!), that is, 

it satisfies the relation 
T1

SS 
. In turn, this allows us to easily obtain for-

mulas expressing the “new” coordinates through the “old” ones. 
 
 
 

Indeed, from the relation 

3

2

1

3

2

1













 S  it follows 

3

2

1
1

3

2

1














S , or finally 

3

2

1

3

2

1

6

2

6

1

6

1

0
2

1

2

1
3

1

3

1

3

1


















. This is the answer to the Task 9-01. 

 
 
 

Solution is found 
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Construction of a basis in which two quadratic forms 
(one of which is of definite sign) 
have a diagonal form 

 
 

Let a pair of quadratic forms and be given in some basis },...,,{ 21 nggg  of a linear space n , 

the first of which )(x  is of definite sign (for example, positive). Let us consider the problem of 

finding a basis },...,,{ 21 nggg   in which the form },...,,{ 21 nggg   has a standard form, and the 

form )(x  has a diagonal form. 

 
We note in advance that the condition of sign-definiteness of one of the quadratic forms to be 

reduced to a diagonal form is essential, since in the general case two different quadratic forms 
may not be reduced to a diagonal form by a single linear change of coordinates 

 
For example, a quadratic form 22

2211 2)(  CBAx   in 2  can be reduced to a diago-
nal form using a linear operator that reduces to a rotation of the plane of basis vectors by an an-
gle  . In this case, it is necessary (check this, or remember the first semester and the theorem on 
reducing a second-order line to a standard form!), so that   satisfies the equation 

 
 

 2cos22sin)( BCA  . 

 
 

However, for a pair of quadratic forms 
\ 

 
22
211 )(   x      and     212 )(  x  

 

an angle   that satisfies the system of conditions 







,2cos0

,02sin2
 obviously does not exist. 
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Let us now describe an algorithm for reducing pairs of quadratic forms )(x  and )(x , de-

fined in n  some initial basis },...,,{ 21 nggg  (the first of which is positive definite), to standard 

and diagonal forms, respectively. 

 

1.  Since the quadratic form )(x  is positive definite, there is another basis },...,,{ 21 nggg   for 

it in n , in which it has a standard form, in which all coefficients are equal to one. 
 
 

Let us reduce this form to this form by some method, for example, by selecting the perfect 
squares (Lagrange's method) with subsequent normalization of the elements of its matrix. 
 
At the same time, we also transform the second quadratic form )(x  by the same method. 

2.  Let us introduce into n  the scalar product (standard) by the formula 



n

k
kkyx

1

),( , 

thereby transforming our linear space n  into Euclidean n . Note that in this case the ba-
sis },...,,{},...,,{ 2121 nn eeeggg   in which )(x  has a standard form is orthonormal. 
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3.  Now we construct a third, also orthonormal basis },...,,{ 21 neee  , the transition to which is 

performed using a matrix S  according to the scheme described at the beginning of this 

text. In this third basis, the quadratic form )(x  is diagonal. 
 
 

During this transition, the quadratic form )(x  will not lose its standard form, since it fol-

lows from the condition E
e
  and orthogonality S  that 

 
 
 

.
1TT

'

T

''
ESSSSSESSS

ee
 

 

 
Thus, a basis is constructed in which the quadratic form )(x  has a standard form, and the 
form of )(x  is diagonal. 

 

Finally, we note that the transition matrix from the original basis to the desired one is the 
product of 

 
the transition matrix, in which the sign-definite quadratic form is reduced to standard form, 
 

and 
 

the orthogonal matrix S . 
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Let us demonstrate the use of the described approach using the following problem as an ex-

ample. 
 
 

Task 9-02.  Find a change of variables that brings the quadratic forms 
 
 

)(x 2
221

2
1 32      

and 
)(x 2

221
2
1 6164   

 
 

to standard and diagonal form, respectively. 
 
 
Solution. 
 
1.  We examine the quadratic forms )(x  and )(x  for sign definiteness. From the Sylvester 

criterion and the inequalities 
 
 

040
68

84
det;02

31

11
det   

 
 

we conclude that )(x  is a positive definite quadratic form, while the form )(x  is not 
sign-definite. 
 
 

2.  We bring the positive definite quadratic form )(x  to standard form using the Lagrange 

method. Since )(x 2
221

2
1 32   2

2
2

21 2)(   , then, having made the change 
of variables 

 








22

211

2      or     














22

211

2

1
2

1

 

 

we obtain )(x 2
2

2
1    and )(x 2

221
2

1 3244   , respectively. 
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3.  Introduction to 2  the scalar product with the identity Gram matrix means that the coordi-

nates };{ 21   are the coordinates of the Euclidean space 2  with the basis },{ 21 ee  , where 

1

0
;

0

1
21 

 ee
ee . The matrix of the quadratic form )(x  in this basis is 

322

224




e
. 

 
It defines the associated self-conjugate operator, which has eigenvalues 51   and 

42   , as well as orthonormal eigenvectors 
 

3

1

3

22

1 
e

f      and     

3

22

3

1

2




e

f , 

 
which we will take as the desired, third basis },{ 21 ee  . 

 
 

A graphical representation of the described procedure is shown in Fig. 1. 
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4.  The transition matrix from an orthonormal basis },{ 21 ee   to an orthonormal 

basis },{ 21 ee   in which   )(x 2
2

2
1      and   )(x 2

2
2

1 45   ,    

orthogonal and has the form 

3

22

3

1

3

1

3

22


S . Obviously, .1det S  

 
 
 
 

Whereby we finally obtain that 
 












 

 

212

211

3

22

3

1
3

1

3

22










 

 

.
3

1

,2
3

22

212

211

 

 
 

Solution is found 
 
 
 

 

 
 

 
Fig. 1. Simultaneous diagonalization of a pair of quadratic forms. 

 
 
 


