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Euclidean space 
 
 
Axiomatics and basic properties 
 

In an arbitrary vector space, there are no concepts of length, distance, angle size, and other metric 
characteristics. However, their use becomes possible if we additionally introduce an operation called 
the scalar product in this space, described by the following rules. 

 
 
 

Definition 1.  Let each ordered pair of elements x  and y  be assigned a real number in a real 
vector space, denoted by the symbol ),,( yx  called the scalar product, so that the 
following axioms are satisfied: 

 
1) );,(),( xyyx   
2) );,(),( yxyx    

3) );,(),(),( 2121 yxyxyxx   
4) 0),( xx ,  and  oxxx  0),( , 
 

then we say that the Euclidean space E is given. 
 
 

Note:  axioms 1)–4) together mean that the scalar product is a form 
 

−  bilinear ( which follows from axioms 2) and 3) ) , 
 

−  symmetric (which follows from axiom 1 ) , 
 

−  which generates a positive definite quadratic (which follows from axiom 
4) form. 

 
 
 

Any bilinear form with these properties can be used as a scalar product. Different ways of introducing 
the scalar product will yield different Euclidean spaces 
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Task 7-01.  

1.  If in n  the space of n-dimensional columns 

nn

yx
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



...
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...

2

1

2

1

, we introduce a scalar prod-

uct defined by the formula 



n

i
iiyx

1

),(  , then we obtain a Euclidean space nE . 

 
 
   

2.  The space of continuous at ],[    functions with scalar product  






 dyxyx )()(),(               (1) 

is Euclidean  
 
 
 
 

Definition  2.  In a Euclidean space E we call: 
: 

1) the norm (or length) of an element x  number ),( xxx  ; 

2) the distance between elements x  and y  number yx  . 
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The following inequalities follow from the axiomatics of Euclidean space: 
 

−  Eyx  ,    yxyx ),(      the Cauchy-Bunyakovsky inequality holds. 
 

−  Eyx  ,  yxyx       the triangle inequality holds.. 

 
Let us check the first of them: we have 
 

.,,0),(),(2),(),( 2 Eyxyyyxxxyxyx    
 

This expression for arbitrary fixed Eyx ,  is a square trinomial with respect to  . This trinomial is 
non-negative R , which means that its discriminant is not positive. That is, 

 

.0),(),)(,(),(
2222  yxyxyyxxyx  

 
Where the validity of the Cauchy-Bunyakovsky inequality follows. 

 
 

Note that the Cauchy-Bunyakovsky and triangle inequalities for Euclidean space can have a rather 
exotic form, such as, say, in examples 1-2  

 
 

 












 dydxdyx )()()()( 22  ,      












 dydxdyx )()()()( 222  . 

 
 

Definition  2.  In Euclidean space E , the value of the angle between non-zero elements x  and 

y  is called the number ],0[    satisfying the relation 
yx

yx ),(
cos  . 

 

In Euclidean space E , elements x  and y  are called orthogonal if 0),( yx  . 
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Orthonormal basis. Orthogonalization of the basis 
 
 

In a finite-dimensional Euclidean space nE , a basis will be called orthonormal if 
 

.],1[,
если,0

,если,1
),( nji

ji

ji
ee ijji 








   

 
 

There is a theorem stating that 
 

in every Euclidean space nE  there is an orthonormal basis. 
 
 
The proof of this theorem is based on the fact that for any set of n  linearly independent elements, 

it is possible to construct a set of pairwise orthogonal elements, each of which is a linear combination 
of elements of the original set. 
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It turns out that the computational costs of orthogonalizing the basis are significantly reduced (in 

comparison, say, with the method of undetermined coefficients) if we apply the so-called Gram-
Schmidt procedure, the essence of which we will explain by considering 

 
 
 

Task 7-02. Let the scalar product in the vector space of algebraic polynomials of degree no 
higher than 2, i.e. of the form 2

321)( xxxP   , be given by formula (1) for 

and 0  and 1 . That is, we have a three-dimensional Euclidean space 3E . 
 

Solution:   Let us take three linearly independent elements in this space, forming a standard ba-
sis:  2

)3()2()1( )(,)(,1)( xxgxxgxg  . These elements are not pair-

wise orthogonal, since, for example, 
 

0
2

1

2
1))(),((

1

0

21

0

)2()1(  
x

dxxxgxg  . 
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The use of the Gram-Schmidt procedure for orthogonalization of a given set is as follows. 

 
We will take the first element of the original set as the first element )1(e  of the desired orthogonal 

set. That is, 1)1()1(  ge . 

 
We will search for the second element of the orthogonal set as a linear combination 

)1(1,2)2()2( ege  , where 1,2  is a constant, the value of which we will select so that the orthogonal-

ity condition is satisfied 
 

0),( )1()2( ee .                (2) 

 
In our case 1)( 1,2)2(  xxe , and the orthogonality condition (2) will be 

 

),(

),(
0),(),(),(),(

)1()1(

)1()2(
1,2)1()1(1,2)1()2()1()1(1,2)2()1()2( ee

eg
eeegeegee    . 

 
 

Which finally gives 
 

2

1

2

1

2
1),(,111),( 1,2

1

0

21

0

)1()2(

1

0

1

0

)1()1(   x
dxxegxdxee  . 

 

So,  
2

1
)()2(  xxe . 
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Now, attention! The main idea of the Gram-Schmidt method: 
 

We will look for the third element of the orthogonal set in the form: 
 

)2(2,3)1(1,3)3()3( eege    .              (3) 

 
 

We will select the values of the constants 1,3  and 1,3   so that the orthogonality conditions are satis-

fied simultaneously 
 

0),( )1()3( ee      and     0),( )2()3( ee  .                (4) 

 
 
By substituting formula (3) into equalities (4), we obtain 

 
 

.0),(),(),(),(),(

,0),(),(),(),(),(

)2()2(2,3)2()1(1,3)2()3()2()2(2,3)1(1,3)3()2()3(

)1()2(2,3)1()1(1,3)1()3()1()2(2,3)1(1,3)3()1()3(





eeeeegeeegee

eeeeegeeegee




 

 
 

These equalities are simplified to 
  

0),(),(,0),(),( )2()2(2,3)2()3()1()1(1,3)1()3(  eeegeeeg   

 

and we get   
),(

),(

)1()1(

)1()3(
1,3 ee

eg
  and 

),(

),(

)2()2(

)2()3(
2,3 ee

eg
 . 
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It remains to calculate three scalar products (as 1),( )1()1( ee was found earlier). 

 

We have     
3

1

3

1

3
1),( 1,3

1

0

31

0

2
)1()3(   x

dxxeg  . 

 
Similarly 

,
12

1

8

1

3

1

8

1

3

1

2

1

3

1

2

1
),(

1

0

31

0

2

)2()2( 





 






   xdxxee  

 

1
12

1

642

1
),( 2,3

1

0

341

0

2
)2()3( 















   xx

dxxxeg  . 

 
 
 

Now we find from (3) 
 

6

1

2

1
1

3

1
)()()()( 22

)2(2,3)1(1,3)3()3( 





  xxxxxexexgxe  . 

 
The orthogonal system is constructed.  
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Finally, we should do the normalization. The corresponding orthonormal system will ob-
viously have the form 
 














)(

)(
)(~,

)(

)(
)(~,

)(

)(
)(~

)3(

)3(
)3(

)2(

)2(
)2(

)1(

)1(
)1(

xe

xe
xe

xe

xe
xe

xe

xe
xe  , 

since   3,2,11
)(

)(

)(

)(  j
xe

xe

j

j . 

 
 
We will calculate the norms of the elements using the formula of point 1) of definition 2. 
We will obtain 
 

 

    ,
32

1

12

1
)(),()(,11)(),()( )2()2()2()1()1()1(  xexexexexexe  

 
30

5

6

1
)(),()(

1

0

2
2

)3()3()3( 





   dxxxxexexe  .     

\ 
 
 
 
 

As a result, after normalization we arrive at the orthonormal basis 
 















 






 

6

1
56)(~,

2

1
32)(~,1)(~ 2

)3()2()1( xxxexxexe  . 

 
 
As a result, after normalization we arrive at the orthonormal basis 
 
 

Solution is found 
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Let us make the following remarks on the found solution. 
 
 
1)  The Gram-Schmidt orthogonalization method can also be used in the case where the space E  

has no basis, and the original set }{ )(ng  is a sequence of elements in this space. The algorithm 

remains the same. 
 

Indeed, let us orthogonalize the first k  elements of the sequence and obtain pairwise orthogonal 
elements },,,{ )()2()1( keee  . 

 
 

We look for the next orthogonalized element using the formula 
 
 




 
k

j
jjkkk ege

1
)(,1)1()1(  ,          (5) 

 

in which each of the coefficients mk ,1  is found by scalar multiplication of both parts of equal-

ity (5) by the element )(me . In this case, due to ],1[if,0),( )()( kmjmee mj  , and the or-

thogonality condition, we obtain 
),(

),(

)()(

)()1(
,1

mm

mk
mk ee

eg 
  . 

Here the condition 0),( )()( mm ee  follows (check this yourself) from the assumption of linear 

independence of the elements of the sequence }{ )(ng . 

 
 
 

2)  The Gram-Schmidt orthogonalization process can also be applied to a linearly dependent sys-
tem of elements of Euclidean space. In this case, as a result of some steps, zero elements may 
be obtained, the discarding of which allows the orthogonalization process to continue. 
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Coordinate representation of the scalar product 
 
 

A useful tool for studying the properties of a set of elements },...,,{ 21 kfff  in Euclidean space is 

the Gram matrix. 
 

Definition 3.  В In Euclidean space E , the Gram matrix of a system of elements },...,,{ 21 kfff  

is a symmetric matrix of the form 
 

.

),(),(),(

),(),(),(

),(),(),(

21

22212

12111

kkkk

k

k

f

ffffff

ffffff

ffffff









  

 
 

Let a basis },...,,{ 21 nggg  be given in nE . The scalar product of elements 



n

i
ii gx

1

  and 

,
1




n

j
jj gy   by definition 1 can be represented as 

 

,),(),(),(
1 11 111

  


n

i

n

j
jiij

n

i

n

j
jiji

n

j
jj

n

i
ii ggggyx  

 
where ],1[,),( njigg jiji   are the components of the matrix 

g
 , called the basis Gram ma-

trix. 
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We have previously noted that this matrix is symmetric, due to the commutativity of the scalar prod-

uct, and is the matrix of a symmetric bilinear form defining the scalar product. Then, 
using the coordinate form of the bilinear form, the coordinate representation of the 
scalar product can be written as follows: 

 
 

,
...

),(...),(),(

............

),(...),(),(

),(...),(),(

...),( 2

1

21

22212

12111

21

T

nnnnn

n

n

nggg

gggggg

gggggg

gggggg

yxyx






  

 
 
 

where 
g

x  and 
g

y  are the coordinate representations (columns) of the elements x  and y  in the ba-

sis },...,,{ 21 nggg . 
 
 
 

Finally, note that in an orthonormal basis E
e
 , and, therefore, the formula for the scalar prod-

uct takes the form  .),(
1

T 



n

i
iiee

yxyx   

 
 

The Gram matrix has the following important properties. 
 
 

Theorem 1.  The system of elements },...,,{ 21 kfff  in E  is linearly independent if and only if 
the determinant of the Gram matrix of this system is positive. 

 
 
 

Corollary 1. For a basis Gram matrix 
g

Γ  in any basis 0Γdet 
g

.  

 
 

Theorem 2.  The system of elements },...,,{ 21 kfff  in E  is linearly dependent if and only if 
the determinant of the Gram matrix of this system is zero. 
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The properties of the Gram matrix can be used to solve various problems. Let us demonstrate this 
by solving 

 
 

Task 7-03. Prove that Vandermonde determinant 
 
 

.0

12

1

1

11

1

1

3

1

2

1

1

2

1
1

det 





nnn

n

n









                                                       (6) 

 
 

Solution:    in E , the vector space of functions continuous on the interval ]1,0[ , with the scalar 
product given by formula (1) for 0  and 1  , we consider linearly independent 

elements  nxxx ,,,,1 2  . 
 

For these elements, we find all possible pairwise scalar products 
 

.
1

1

1
),(

0

111

0 






 qpqp

x
dxxxx

qp
qpqp  

 
We form from them the Gram matrix, which has the form of the matrix in formula (6) 
for 1,,1,0  np   and 1,,1,0  nq  . 
 
Since the elements we have chosen are linearly independent (prove this yourself, using, 
for example, Cramer's theorem), then by virtue of Theorem 1 the determinant of this ma-
trix is positive. 
 

 
Solution is found 
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Orthogonal Matrices. Orthogonal Projections 
and Orthogonal Complements in Euclidean Space 
 
 
The scalar product operation in Euclidean space allows us to significantly expand the scope of appli-
cation of linear operators and quadratic forms, but this requires the introduction of several additional 
concepts. 
 
 

Definition 1.  A square matrix Q  satisfying the equality 
T1

QQ 
 is called orthogonal. 

 
 

It is clear that solving systems of linear equations whose underlying matrix is orthogonal is a joy 
compared to, say, solving using Cramer's method. It is also useful to remember such properties of or-
thogonal matrices as: 
 

EQQQQ  TT
     and     1det Q . 

 
 

In addition, the following theorems will be valid in Euclidean space. 
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Theorem 1.  Orthogonal matrices (and only they!) in nE  can serve as transition matrices 
from one orthonormal basis to another. 

 
 
 

 Indeed, let there be two different orthonormal bases },...,,{ 21 neee  and },...,,{ 21 neee   in nE  with a 

transition matrix S  from the first basis to the second. 

In these bases, the Gram matrix is identity, so the equality SS
ee




T
, or SSE

T  

follows from the relation. And, since the transition matrix is non-singular, we have 
T1

SS 
. 

 
 

Theorem 2.  The eigenvalues of a linear transformation that has an orthogonal matrix in 
an orthonormal basis nE  are equal in absolute value to one. 

 
 
 

Try to prove this theorem (or find its proof in some resource) as an exercise. 
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Next, let a subspace 1E  be given in E . Consider a set of elements x  in EE 2  orthogonal to all 

elements of 1E . Then we can give 
 
 
 

Definition 2.  In a Euclidean space E , a set 2E  is a collection of elements x  such that 

0),( yx  EEy  1  is called the orthogonal complement of the set 1E . 
 
 

The following are true: 
 

 

Theorem 3.  If 2E  is the orthogonal complement of a subspace EE 1 , then 1E  is the or-

thogonal complement of 2E . 
 
and 
 
 

Theorem 4.  The orthogonal complement of an k -dimensional subspace nEE 1  is a sub-
space of dimension kn  . 

 
 
 In a regular three-dimensional vector space, an example of an orthogonal complement to the coordi-
nate plane Oxy  is the coordinate axis Oz . The converse is also true. 
 
 
 



LINEAR ALGEBRA      Umnov A.E., Umnov E.A. 
Theme 07 Seminars 2024/25 

 

17 

 
 
 
Finally, we give 
 
Definition 3.  In a Euclidean space, an element E  is called an orthogonal projection of an ele-

ment x  onto a subspace E  if 

1. y E 
; 

2.  Euuyx 0),( . 
 
 
Very useful for many applications is 
 
Theorem 5.  If EE   is an k -dimensional subspace, then an element y , an orthogonal 

projection Ex  onto E , exists and is unique. 
 

 
Let's analyze its proof. 
 

If there is a basis },...,,{ 21 kggg  in E , then the element  Ey  can be represented as 





k

i
ii gy

1
. 

 The condition  Euuyx 0),(  is equivalent to the orthogonality of the vector to 

each of the basis elements of the subspace E , that is, 
 

],1[0),( kjgyx j  , 

 
and, therefore, the numbers ],1[, kii   can be found from a system of linear equations 

 





k

i
jii kjggx

1

],1[0),(       or    



k

i
jiji kjgxgg

1

],1[),(),(  . 

 
Since the basic matrix of this system (as the Gram basis matrix of a set of linearly inde-
pendent elements kggg ,...,, 21 ) is non-singular, then by Cramer's theorem a solution to 

this system exists and is unique. 
 
 

Note also that if the basis },...,,{ 21 keee  in E  the subspace is orthonormal, then the orthogonal 

projection of an element onto is an element of the form .),(
1




k

i
ii eexy  
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Task 7-04. In Euclidean space 4E  with initial standard orthonormal basis and scalar product, find the 

orthogonal projection of the element 

11

0

2

4




x     

1)  onto ʘ − the linear span of the elements 

0

0

1

1

1



g  and  

3

2

2

2

2 g  ; 

 

2)  onto the orthogonal complement of ʘ . 
 

 
Solution: 1⁰.Note (justify this) that the elements 1g  and 2g  not only generate the linear span of 

ʘ, but also form an orthogonal basis in it. The dimension of ʘ in this problem is 2. 
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2⁰. According to definition 3 and the triangle rule, we have the following relationships: let 
y  be the orthogonal projection x  onto ʘ, then 
 

  

 

  

.

,

,

2211

2211

ggxz

ggy

yxz











 

 
 

The orthogonality condition for each element z of ʘ will be: 
 
 

 
 

     
     









 


.,,,
,,,,

or
0,
,0,

2222112

1221111

2

1

xggggg
xggggg

z
zg
zg




      (1) 

 
Having found 1  and 2  from system (1), we obtain y  which is  the desired or-
thogonal projection onto the linear shell ʘ . 
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In order to obtain system (1), we calculate the following five scalar products: 
 

 
 
 
 
  ,2111302)2(2)4(2,

,211000)2(1)4)(1(,

,2133222222,

,03020212)1(,

,2000011)1)(1(,

2

1

22

21

11







xg

xg

gg

gg

gg

 

 
 

Then system (1) will have the form and, accordingly, an obvious solution 
 

.1,1
21210

,202
21

21

21 











 

 
Note that the main matrix of this system is diagonal, due to the elements 1g  and 2g  
are orthogonal. 
 

 

Now we find the answer to the first question of the problem: the orthogonal projec-
tion of the element onto the linear hull of the elements 1g  and 2g  will be equal to 

2211 ggy    . That is, 

3

2

3

1

3

2

2

2

1

0

0

1

1

1 



y . 
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3⁰. The answer to the second question is already practically obtained if we note that the 

orthogonal complement to ʘ (by definition 2) is the linear span of the element 

2211 ggxz   . 
Show that it follows from Theorem 3 that the orthogonal projection of the element x  
onto the orthogonal complement to ʘ will be precisely the element of the form 

2211 ggxz   . 
 

When solving problems that require finding the orthogonal projection onto some subspace, it 
should be remembered that the subspace can be defined not only as the linear span of some ele-
ments, but also using a homogeneous system of linear equations. 

 
For a better understanding of this fact, try (as an exercise) to solve 
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Task 7-05.  In a Euclidean space 4E  with an initial orthonormal basis and a standard scalar 

product, find y , which is the orthogonal projection of an element 

2
2
1
1


x  onto 

ʘ . Here ʘ is a subspace defined by a system of linear equations 
 








.03
,02

321

431




 

 
 

In this problem, I got the answer 

1

1

2

1




y . 
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Task 7-06. In a Euclidean space 4E  with a standard scalar product in some orthonormal basis, a 

homogeneous system of linear equations 








02

,0

21

4321
 

defines a subspace E  . Find in this basis the matrix of a linear transformation that is 
an orthogonal projection of elements 4E  onto E  . 
 
 

 

Solution:   
 

1.  A pair of elements and can be taken as a basis for the subspace E , whose coordinate representa-
tions in the original basis },,,{ 4321 eeee  are linearly independent solutions of a homogeneous sys-

tem of linear equations defining E , for example, 
 

1

0

2

1

;

0

1

2

1

21








ee

gg . 

 
2.  Since ,2dim E  the dimension of the orthogonal complement E  according to Theorem 3 is 

also equal to 2. It is convenient to take as a basis in this orthogonal complement the elements 3g  

and 4g , such that 

0

0

1

2

;

1

1

1

1

43 





ee

gg , since they are linearly independent and orthogo-

nal to each element from the subspace E  , as formed from the coefficients of the system of lin-
ear equations specified in the problem statement. 
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3.  Elements 1g , 2g , 3g  and 4g are linearly independent by construction and form a basis in E 4  , 

and each element of E 4  can be represented, and uniquely, as a linear combination of elements of 
this basis },,,{ 4321 gggg . 

 

The desired operator A  of orthogonal projection of elements 4E  onto 4E  must obviously satisfy 
the relations 
 

,ˆ;ˆ;ˆ;ˆ
432211 ogAogAggAggA   

 

by virtue of which its matrix in the basis },,,{ 4321 gggg  will have the following form: 
 

.

0000

0000

0010

0001

ˆ 
g

A  

 
4.  On the other hand, the matrix of transition from basis },,,{ 4321 eeee  to basis },,,{ 4321 gggg  

 

0110

0101

1122

2111






S  , 

 

but since SASA
eg

ˆˆ 1  and, therefore ,ˆˆ 1 SASA
ge

 then, using the 

rules for calculating the product of matrices, we find that 
 

 

.

6521

5621

2284

1142

11

1

0110

0101

1122

2111

0000

0000

0010

0001

0110

0101

1122

2111

ˆ

1

























e
A

 

 
 
 
Solution is found 
 


