Taylor formula

Let us now consider other methods of studying a function in a small neighborhood of some point.

These methods are based on the use of derivatives up to the n-th order. Let the point x_0 for the function y(x) be an interior point of the domain

of definition.

That is, there is a paighborhood of m antirely contained in the demain

That is, there is a neighborhood of x_0 entirely contained in the domain of definition of this function.

And let the function y(x) at this point have continuous derivatives up to and including the n-th order.

Let us assume that an analytical description (for example, in the form of a formula) of the function y(x) is too complex for study. Or it is unknown at all. And let us be interested in the properties of y(x) only in a relatively small neighborhood of the point x_0 .

Then it seems appropriate to use an approximate description of this function in the form of a linear combination of power functions of order no greater than n:

$$y(x) \approx \sum_{k=0}^{n} A_k (x - x_0)^k$$

is valid, where $A_k \ \forall k \in [0, n]$ are some constants.

Specifically, we will assume that in some neighborhood of the point x_0 the equality

$$y(x) = \sum_{k=0}^{n} A_k (x - x_0)^k + r(x, x_0)$$
 (5.1)

is true. Here $r(x, x_0)$ is a function equal to the approximation error.

Formally, (5.1) can be written with any coefficients A_k . However, one can expect that the quality of the approximation (i.e. the magnitude of $|r(x,x_0)|$) will depend on the values of these coefficients.

Therefore, we will use (5.1) with values of A_k such that the value $|r(x, x_0)|$, is minimal.

To do this, we require that the value of $r(x, x_0)$ be equal to zero at $x = x_0$.

Relation (5.1) at $x = x_0$ turns into the equality

$$y(x_0) = A_0 + r(x_0, x_0). (5.2)$$

Whence it follows that, to satisfy the condition $r(x_0, x_0) = 0$, we must take $A_0 = y(x_0)$.

Next, we require that the first derivative of the remainder term also be equal to zero at $x = x_0$.

We know that if functions are equal, then their derivatives are also equal. Then the equality obtained from (5.1) by term-by-term differentiation will be

$$r'(x,x_0) = y'(x) - \sum_{k=1}^{n} kA_k(x-x_0)^{k-1}.$$
 (5.3)

Hence we obtain that at $x = x_0$ the condition $r'(x_0, x_0) = 0$ will be true, subject to $A_1 = y'(x_0)$.

Reasoning similarly, we obtain that the derivative of the remainder term of order k will turn to 0 at $x=x_0$, subject to $f^{(k)}(x_0)=k!\,A_k$. From which we get

$$A_k = \frac{1}{k!} y^{(k)}(x_0). (5.4)$$

As a result, we come to the conclusion that the «best» approximation of the function y = f(x) has the form

$$y(x) = \sum_{k=0}^{n} \frac{y^{(k)}(x_0)}{k!} (x - x_0)^k + r(x, x_0).$$

If in the power approximation its coefficients are chosen according to formulas (5.4), then $r(x,x_0) = o(x-x_0)^n$.

In this case, the equality

$$y(x) = \sum_{k=0}^{n} \frac{y^{(k)}(x_0)}{k!} (x - x_0)^k + o(x - x_0)^n$$
 (5.5)

is called the expansion of the function y(x) in a neighborhood of the point x_0 according to the Taylor formula with the remainder term in Peano form.

If y(x) has derivatives up to order n+1 inclusive in a neighborhood of the point x_0 , then for any x in this neighborhood there exists ξ such that

$$r(x,x_0) = \frac{y^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}.$$

In this case $r(x, x_0)$ is called as the remainder term of the Taylor formula in Lagrange form.

Equality (5.5) in the case when $x_0 = 0$ is usually called the Maclaurin formula.

Finally, we note that $x - x_0 = dx$ and (5.5) can be written as

$$y(x) = y(x_0) + \sum_{k=1}^{n} \frac{1}{k!} d^k y + o(x - x_0)^n.$$

We present Maclaurin formulas for some basic elementary functions.

1)
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) =$$

= $1 + x + \frac{x^2}{2!} + o(x^2)$,

2)
$$\operatorname{sh} x$$
 = $\sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) =$
= $x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)$,

3)
$$\operatorname{ch} x$$
 = $\sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) =$
= $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5)$,

4)
$$\sin x$$
 = $\sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) =$
 = $x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)$,

5)
$$\cos x$$
 = $\sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) =$
= $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5)$,

6)
$$(1+x)^a = 1 + \sum_{k=1}^n C_a^k x^k + o(x^n) =$$

= $1 + ax + \frac{a(a-1)}{2!} x^2 + o(x^2)$,

7)
$$\frac{1}{1+x}$$
 = $\sum_{k=0}^{n} (-1)^k x^k + o(x^n) = 1 - x + x^2 + o(x^2)$,

8)
$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n) = 1 + x + x^2 + o(x^2)$$

9)
$$\frac{1}{\sqrt{1-x}} = 1 + \sum_{k=1}^{n} \frac{(2k-1)!!}{2^k k!} x^k + o(x^n) = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + o(x^2),$$

10)
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n) =$$

= $-\frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$,

11)
$$\operatorname{arctg} x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}) =$$

$$= x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^6).$$

They may also be useful

12)
$$\operatorname{tg} x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6),$$

13)
$$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^6).$$

- Example 5.01. Expand by Taylor formula $y(x) = \frac{x^2 + 5}{x^2 + x 12}$ in the neighborhood of $x_0 = -1$ up to $o((x+1)^n)$.
- Solution. 1) To use Maclaurin's table formulas, we make a change of variable t = x + 1, then x = t 1 and

$$f(t) = \frac{(t-1)^2 + 5}{(t-1)^2 + (t-1) - 12} = \frac{t^2 - 2t + 6}{t^2 - t - 12} = \frac{t^2 - 2t + 6}{(t-4)(t+3)}.$$

2) Expand f(t) into simple fractions

$$f(t) = A + \frac{B}{t-4} + \frac{C}{t+3}.$$

From the condition $A(t-4)(t+3)+B(t+3)+C(t-4)=t^2-2t+6$ we find that $A=1,\ B=2,\ C=-3$, that is

$$f(t) = 1 + \frac{2}{t-4} - \frac{3}{t+3}.$$

3) Transform the entry f(t) to a form convenient for using tabular decompositions

$$f(t) = 1 - \frac{1}{2} \frac{1}{1 - \frac{t}{4}} - \frac{1}{1 + \frac{t}{3}}$$

and use formulas 7) and 8), we obtain

$$f(t) = 1 - \frac{1}{2} \sum_{k=0}^{n} \frac{t^k}{4^k} - \sum_{k=0}^{n} \frac{(-1)^k t^k}{3^k} + o(t^n) =$$

$$= \left(1 - \frac{1}{2} - 1\right) + \sum_{k=1}^{n} \left(-\frac{1}{2 \cdot 4^k} + \frac{(-1)^{k+1}}{3^k}\right) t^k + o(t^n).$$

4) Finally, we return to the original independent variable x:

$$f(x) = -\frac{1}{2} + \sum_{k=1}^{n} \left(\frac{(-1)^{k+1}}{3^k} - \frac{1}{2 \cdot 4^k} \right) (x+1)^k + o((x+1)^n).$$

- Example 5.02. Expand by Taylor's formula $y(x)=e^{2x^2-12x}$ in the neighborhood of $x_0=3$ up to $o((x-3)^{2n+1})$.
- Solution. 1) To use expansions by Maclaurin's formula, introduce a new variable t = x 3, and express y(x) through t by substituting x = t + 3, we get

$$f(t) = e^{2(t+3)^2 - 12(t+3)} = e^{2t^2 - 18}$$

Applying formula 1), we get

$$f(t) = e^{-18} \sum_{k=0}^{n} \frac{(2t^2)^k}{k!} + o((t^2)^n) = e^{-18} \sum_{k=0}^{n} \frac{2^k t^{2k}}{k!} + o(t^{2n+1})$$

2) Returning to the original variable x, we obtain the desired expansion according to the Taylor formula

$$y(x) = e^{-18} \sum_{k=0}^{n} \frac{2^k}{k!} (x-3)^{2k} + o((x-3)^{2n+1}).$$

Example 5.03. Obtain an expansion by Maclaurin's formula for the function $y(x) = \cos 2x \sin x$ up to $o(x^{2n+2})$.

Solution. 1) Applying the trigonometric formula

$$\cos \alpha \sin \beta = \frac{\sin(\alpha + \beta) - \sin(\alpha - \beta)}{2},$$

we obtain $y(x) = \frac{1}{2}\sin 3x - \frac{1}{2}\sin x$. Then according to formula 4)

$$y(x) = \frac{1}{2} \left(\sum_{k=0}^{n} (-1)^k \frac{(3x)^{2k+1}}{(2k+1)!} - \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \right) + o(x^{2n+2})$$

And finally,

$$y(x) = \frac{1}{2} \sum_{k=0}^{n} \frac{(-1)^k (3^{2k+1} - 1)}{(2k+1)!} x^{2k+1} + o(x^{2n+2})$$

Example 5.04. Represent the function

$$y(x) = \ln \sqrt[4]{\frac{x-2}{5-x}}$$

in the neighborhood of the point $x_0 = 3$ up to $o((x-3)^n)$ by the Taylor formula.

Solution. 1) To apply the expansions according to Maclaurin's formula, we introduce a new variable t = x - 3, and express y(x) through t by substituting x = t + 3, we get

$$f(t) = \ln \sqrt[4]{\frac{1+t}{2-t}} = \frac{1}{4}(\ln(1+t) - \ln(2-t)) =$$
$$= \frac{1}{4}\ln(1+t) - \frac{1}{4}\ln\left(2\left(1 - \frac{t}{2}\right)\right).$$

Applying formula 10) twice, we find that

$$f(t) = \frac{1}{4} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} t^k - \frac{1}{4} \ln 2 + \frac{1}{4} \sum_{k=1}^{n} \frac{1}{k 2^k} t^k + o((t)^n) =$$

$$= -\frac{1}{4} \ln 2 + \sum_{k=1}^{n} \left(\frac{(-1)^{k-1}}{4k} + \frac{1}{k 2^{k+2}} \right) t^k + o((t)^n)$$

2) Returning to the original variable x, we obtain the desired expansion by Taylor's formula

$$y(x) = -\frac{1}{4}\ln 2 + \sum_{k=1}^{n} \frac{(-1)^{k-1}2^k + 1}{4k2^k} (x-3)^k + o((x-3)^n).$$

Example 5.05. Expand by Maclaurin's formula $y(x) = (x-1)e^{\frac{x}{2}}$ up to $o(x^n)$.

Solution. 1) According to formula 1), we have

$$y(x) = (x-1) \left(\sum_{k=0}^{n} \frac{1}{2^k k!} x^k + o(x^n) \right).$$

This is correct, but it is not an answer to the problem.

2) Expanding the outer brackets, we get

$$y(x) = \sum_{k=0}^{n-1} \frac{1}{2^k k!} x^{k+1} - \sum_{k=0}^{n} \frac{1}{2^k k!} x^k + o(x^n).$$

Introduce the summation index m=k+1. Then we have k=m-1 and

$$y(x) = \sum_{m=1}^{n} \frac{1}{2^{m-1}(m-1)!} x^m - \sum_{k=0}^{n} \frac{1}{2^k k!} x^k + o(x^n).$$

3) The value of the sum does not depend on which letter denotes the summation index. In the first sum, replace m with k and write y(x) in the form

$$y(x) = -1 + \sum_{k=1}^{n} \frac{1}{2^{k-1}(k-1)!} x^k - \sum_{k=1}^{n} \frac{1}{2^k k!} + o(x^n) =$$
$$= -1 + \sum_{k=1}^{n} \left(\frac{1}{2^{k-1}(k-1)!} - \frac{1}{2^k k!} \right) x^k + o(x^n).$$

The last expression can be simplified a bit by writing

$$y(x) = -1 + \sum_{k=1}^{n} \frac{1}{2^{k}(k-1)!} \left(2 - \frac{1}{k}\right) x^{k} + o(x^{n}).$$

Finally we get

$$y(x) = -1 + \sum_{k=1}^{n} \frac{2k-1}{2^{k}k!} x^{k} + o(x^{n}).$$

Example 5.06. Expand by Maclaurin's formula $y(x) = \frac{1}{1+x+x^2}$ up to $o(x^n)$.

Solution. 1) Using formula 7) we can write

$$\frac{1}{1+x+x^2} = \sum_{k=0}^{n} (x+x^2)^k + o(x^{2n}).$$

This is true, but it is not the answer, since it requires a formula of the view

$$\frac{1}{1+x+x^2} = \sum_{k=0}^{n} A_k x^k + o(x^n).$$

2) First, we transform y(x), multiplying the numerator and denominator by 1-x.

$$y(x) = \frac{1}{1+x+x^2} = \frac{1-x}{(1-x)(1+x+x^2)} = \frac{1-x}{1-x^3}.$$

Then, according to formula 8), the equality will be true

$$y(x) = (1-x)\left(\sum_{k=0}^{n} x^{3k} + o(x^{3n})\right).$$

3) Let's write the last formula without the summation symbol

$$y(x) = (1-x)(1+x^3+x^6+x^9+\ldots+x^{3n}+o(x^{3n}))$$

or, in ascending order of powers of x

$$y(x) = 1 - x + 0x^2 + x^3 - x^4 + 0x^5 + x^6 - x^7 + \dots + x^{3n} + o(x^{3n}).$$

That is, the numerical sequence $\{A_k\}$ has the form

$$\{1, -1, 0, 1, -1, 0, 1, -1, 0, \ldots\}$$

with a periodically repeating triad of members 1, -1, 0. This sequence can be defined functionally, for example, by the formula

$$A_k = \frac{2}{\sqrt{3}} \sin \frac{2\pi(k+1)}{3},$$

which allows us to write the answer to the problem as

$$y(x) = \frac{2}{\sqrt{3}} \sum_{k=0}^{n} \sin \frac{2\pi(k+1)}{3} \cdot x^{k} + o(x^{n}).$$

Example 5.07. Obtain the Maclaurin formula for

$$y(x) = \operatorname{arctg} x$$
.

Solution. 1) Note that in this case the function y'(x) can easily be written as a Maclaurin expansion using formula 7) . Indeed

$$y'(x) = \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + o(x^{2n+1}).$$

Integrating this equality over x we get

$$\operatorname{arctg} x = C + \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}),$$

where C is a constant.

Taking into account that arctg 0 = 0, we obtain

$$\arctan x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2}).$$