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Cramer's rule 
 
 

We will consider a system of linear equations n  with n  unknowns: 
 















nnnnnn

nn

nn






...
...............................................

,...
,...

2211

22222121

11212111

     (*) 

 

in an unexpanded form ],1[;
1
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  or in matrix form A x b , where the 

square matrix A  has components ji , and the columns x  and b  are respectively i  and j . 

 
 
 
 
 

 

Definition 
 

We will call an ordered set of numbers },...,,{ 21 n  a particular solution 

(or, simply, a solution) of a system of linear equations if, when substituting 
these numbers into each of the equations of the system, we obtain an iden-
tity. 
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There is a 

 
 

Theorem 
 
(Cramer's 
rule). 

In order for the system of linear equations (*) to have a unique solu-
tion, it is necessary and sufficient that 0det  A , and in this case 

the solution of this system will have the form 
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where i  is the determinant of the matrix obtained from the matrix A  

by replacing its i-th column with a column of free terms b : 
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Task 12.01.  Find all solutions of a system of linear equations 

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 for any 

values of the parameter R . 
 

 
Solution:  1) Cramer's theorem states: in order for a system of linear equations 
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 to have a unique solution };{ 21
 xx , it is necessary and suf-

ficient that 0 , while 
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In the case when 0 , a special study is required. 
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2). In our case 
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Therefore, when ),4()4,4()4,(   by Cramer's theorem the system 
has a unique solution 
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3). When 4  the given system has the form 
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no solutions here. 
 
 

4). Finally, when 4  the given system will be
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set of solutions described by the formula 
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Solution is found 
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Rank of a matrix 
 
 

Consider a matrix A  of size nm . Let the number k be such that },min{1 nmk  . We 

choose in A  in some way k columns and k rows whose intersections contain elements that form 

a square matrix of a minor of order k. 
 
Let all minors of order higher than k  be zero, then all minors of order higher than k  will be 

zero, since each minor of order 1k  can be represented as a linear combination of minors of 
order k . 

 
 

 
Definition 
 

 

The maximum of the orders of minors of matrix A , different from zero, is 

called the rank of the matrix and is denoted by Arg . 

 
  Any nonzero minor of the matrix whose order is equal to its rank is called a 

basic minor. 
 

 

 The columns (rows) of the matrix that are part of the matrix of a basic minor 
are called basic. 
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Next, we consider n  pieces of m-component columns of the form 
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and columns 
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Since for columns (as a special case of matrices) the operations of comparison, addition and 

multiplication by a number are defined, we will say that a column b  is a linear combination of 

columns 

a a an1 2, , ... , , 
 

if there exist numbers n ,...,, 21  such that 
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Theorem  
(On  
the basic 
minor).  

Every column (row) of a matrix is a linear combination of the basic col-
umns (rows) of this matrix. 
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Definition 
 

We will call columns naaa ,...,, 21  linearly dependent if there exist num-

bers n ,...,, 21  that are not equal to zero simultaneously, such that 
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Lemmas 
 

1) For the columns (rows) of a matrix to be linearly dependent, it is nec-
essary and sufficient that one of them be a linear combination of the 
others. 
 

 2) If among the columns of a matrix there is a linearly dependent sub-
set, then the set of all columns of this matrix is also linearly dependent. 
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Theorem 
 

For the determinant to be equal to zero, it is necessary and sufficient 
that the columns (rows) of its matrix be linearly dependent. 

 
 
 
Theorem 
(On the rank 
of a matrix) 
 

The maximum number of linearly independent columns of a matrix is 
equal to the maximum number of linearly independent rows and is 
equal to the rank of this matrix. 
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Task 12.02.  Find the rank of a 100x200 matrix, all elements of which are equal to 5. 

 
 
Solution:  1). On the one hand, the sought rank is not less than one, since there is a non-

zero minor of the first order different from zero. For example, this is the deter-
minant of a square submatrix of size 1x1, which is the first element in the first 
row and first column. 

 
2). On the other hand, any minor of the second order in this matrix has the form 

.055
55det   Therefore, the rank of this matrix is strictly less than 2. 

 
3). Comparison of points 1 and 2 leads to the conclusion that the sought rank is 
equal to one. 

 
 
Solution is found 
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For practical calculation of rank, the Gauss method is used, which consists of successive changes 
in the matrix, in which the value of the determinants of square submatrices (and, therefore, the 
value of the rank) does not change, and the calculation of the rank of the final matrix is easy to 
perform according to its definition. 
 
 
Task 12.03.  Using the Gauss method, find the rank of the matrix 
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Solutioon:  1). Поскольку исходная матрица имеет две одинаковые строки, то, заменив 

четвертую строку разностью первой и четвертой, получим 
 

.

141428

0000

171737

121263

101062

rg

141428

101062

171737

121263

101062

rgrg
















A  

 
The zero row can be discarded, since it does not affect the value of the rank of 
the matrix. 
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2). Next, we zero out all the elements of the first column, except for the one in the 
first row. To do this, we replace the second row with the difference of the first and 
second. We replace the third row with the sum of the third and second, multiplied 
by 7. We replace the fourth row with the difference of the fourth and second, multi-
plied by 4. 
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Then, taking 18 out of the third row, and 13 out of the fourth, we get 
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At the last step, we replace the third row with the difference of the third and second. 
Finally, we replace the fourth row with the sum of the fourth and second. As a re-
sult, we get a matrix with an obvious rank value 
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Solution is found 
 
 
 


