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Second-order curves (conics) in a plane 
 
 

Let an Cartesian coordinate system be given in a plane { , , }O e e1 2

 
 with orthonormal basis. 

 
 
Definition 
 

 
A line L  is called an algebraic second-order line (or conics) if its equation 
in a given coordinate system has the form 
 

,0222 22  FEyDxCyBxyAx  
 

where the numbers A , B  and C  are not equal to zero simultaneously, and 
x  and y  are the coordinates of the radius vector of a point belonging to L . 

 

 
 

Since the coefficients of this equation depend on the choice of coordinate system, when study-
ing the properties of second-order lines (conics), it is advisable to try to find another orthonormal 

coordinate system { , , }  
 

O e e1 2  in which the equation of the line is simpler. 
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The solution to this problem is given by 
 
Theorem 
 

For any second-order line (conics), there exists an Cartesian coordinate 
system (with orthonormal basis) in which the equation of this line (for 

0,0  pba ) has one of the following nine (called canonical) forms: 
 

T\,a\,b\,l\,e 1 
 

 
Line type 

 
 
Line class 
 

 
Elliptic 

 
0  

 
Hyperbolic 
 

0  

 
Parabolic 
 

0  

 
Empty sets 1

2

2

2

2







b

y

a

x
 

 

 
xay  22  

Isolated points 
0

2

2

2

2





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b
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x
 

  

Coincident lines 

 

  xy  02  

 
Non-coincident lines 
 

 
0

2

2

2

2







b

y

a

x
 

 

xay  22  

Curves Ellipse 

1
2

2

2

2







b

y

a

x
 

 

Hyperbola 

1
2

2

2

2







b

y

a

x
 

 

Parabola 

  y px2 2  

 
 

where   .det 2BAC
CB

BA
  
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The equations of the tangents to an ellipse, hyperbola and parabola passing through a point 
),( 00 yx  belonging to a line in the canonical coordinate system have, respectively, of the form 

 

1
2
0

2
0 

b

yy

a

xx ,    1
2

0

2

0 
b

yy

a

xx    and   )( 00 xxpyy  . 

 
The following problems illustrate methods for studying the properties of second-order lines 

(conics). 
 
 

Task 8.1. Find all points on an ellipse 1
832

22


yx  for which the tangent is parallel to the 

line  042  yx . 
 

Solution:   1) The equation of the tangent to a given ellipse passing through a point on the 

ellipse with coordinates and , is of the form:  1
832
00 
yyxx .  
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2)  The condition of parallelism or coincidence on the plane of two lines 
 

0111  CyBxA      and     0222  CyBxA  
 
has the form: 0  such that 21 AA   and 21 BB  . In this problem, this 
condition gives the relations 

1
32

0  x
     and     )2(

8
0  y

     

   320 x      and      160 y . 

 
3) The point with coordinates 0x  and 0y  belongs to the ellipse, therefore 

 

1
832

2
0

2
0 

yx    1
8

)16(

32

)32( 22





    164 2     

8

1
  . 

 
From which we obtain two points: (4, -2) and (-4, 2), which are the solution to 
the problem. 
 

Solution is found 
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Task 8.2.  On a hyperbola 1
4

2
2

 y
x , find all points whose distance to one of the asymp-

totes is equal to three times the distance to the other. 
 
 

Solution: 1) The equation of the tangent to a given hyperbola passing through a point 

with coordinates 0x  and 0y  has the form: 1
4 0
0  yy
xx . In this case, the equa-

tions of the asymptotes of this hyperbola will be 
2

x
y  . 

 
2) Recall that the distance from a point with coordinates 0x  and 0y  to a line of 

the form 0 CByAx , in an orthonormal coordinate system is given by the 
formula 

22

00

BA

CByAx
L




  . 
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Therefore, the distances to the first and second asymptotes in our problem will 
be 

5

2

1
2

1

2 00

2
2

0
0

1

yx
y

x

L













  and  

5

2

1
2

1

2 00

2
2

0
0

1

yx
y

x

L













 . 

 
Since the condition does not specify which of the asymptotes the point is closer 
to, we will have to consider two cases: 21 3LL   and 213 LL  . 
 
3) Let's consider the first case. Since the point with coordinates 0x  and 0y  be-

longs to the hyperbola, it is necessary to solve the system of equations 
 













.1
4

,232

2
0

2
0

0000

y
x

yxyx
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The expansion of the absolute value symbols leads to two variants: 
 

 











1
4

,232

2
0

2
0

0000

y
x

yxyx
    or   

 











1
4

,232

2
0

2
0

0000

y
x

yxyx
 

 

In the first variant, from the first equation we have 00 yx  , which, by virtue 

of the second equation, yields 1
4

3 2
0 

y
, that is, there are no solutions here. 

In the second variant, from the first equation we obtain 00 4yx  . Then from 

the second equation we have 13 2
0 y , or 

3

4

3

1
00  xy . This 

yields two solutions to the problem 







3

1
,

3

4
 and 






 

3

1
,

3

4
. 

 
4) The reasoning in the case 213 LL   is similar. They yield two solutions to the 

problem 







3

1
,

3

4
 and 






 

3

1
,

3

4
, which can also be obtained from the 

first pair of solutions and the symmetry of the hyperbola branches relative to 
the canonical coordinate axes. 
 

Solution is found 
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Task 8.3.  Find out whether the statement is true: the tangent to the parabola intersects 
the directrix and the focal chord perpendicular to the parabola axis at points 
equidistant from the focus. Justify your answer. 

 
 
Explanations for the figure: 
 
  the red line is the parabola, 
  the blue line is the tangent, 
  line AH is the directrix,  
  line FB is the focal chord, 
  C is the point of tangency of the parabola, 
  A is the point of intersection of the tangent and the directrix, 
  B is the point of intersection of the tangent and the focal chord, 
  the line HG  is parallel to the axis Ox, 
  the line CE  is perpendicular to the tangent. 
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Let us give two versions of proof of the validity of this statement: standard geometric (using 
a drawing) and analytical, not using visual images. 

 
 

Geometric proof 
 
Angles GCE and ECF are equal by the optical property of a parabola and are equal to 
 . 
 
Angles ECF and CBF are equal   as angles with mutually perpendicular sides 
 
Angles DAC and CBF are equal   as intersecting at parallel lines. 
 

Angles ACF and BCG are equal to 



2

. 

 

Angle HCA is also equal to 



2

. 

 
Then, by virtue of CFHC   (since the eccentricity for a parabola is 1), triangles AHC 
and ACF are equal, which means angles DAC and CAF are equal . 
 
But then angles CAF and CBF are equal  , that is, triangle ABF is isosceles and 

BFAF  . 
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Analytical proof 
 

Let the point of tangency have coordinates 0x  and 0y . Then we have that 0
2
0 2 pxy  , and the 

equation of the tangent will be )( 00 xxpyy  . In addition, we take into account that the equa-

tion of the directrix is 
2

p
x  , and the equation of the focal chord is 

2

p
x  . Also note that 

FB  is equal to the modulus of the ordinate of point B, and FA is the distance between points F 
and A. 

 

The focal point F has coordinates 







0,
2

p
. Then the coordinates of point B are defined as fol-

lows: 

.
22)(

2
0

0
2

0
0

00
y

pxp
yx

p

y

p
y

xxpyy

p
x

BB

BB

B








 









  
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On the other hand, the coordinates of point A are found from the system 
 

.
2

2

2)(
2

0

0
2

0
0

00
y

pxp
yx

p

y

p
y

xxpyy

p
x

AA

AA

A








 









  

 
Since the coordinate system is orthonormal, then taking into account 0

2
0 2 pxy   we obtain 

 

.
24

48

4

444

2

2

222

0

0
2

2
0

2
0

2
0

34
0

3

2
0

2
0

2
0

342
0

2

2

0

0
22

2
2

FB
y

pxp

y

xpxppxp

y

xpxppyp

y

pxppp
y

p
xFA AA



















 







 






 
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Practical classification of second-order (conics) curves 
 
 

I. The analysis is simplified if the equation of the second-order line has a special form. 
 
 

Task 8.4. Find out the type of the second-order line (without reducing its equation to ca-
nonical form)     .0)132()34( 2  yxyx  

 
 

Solution. Let us denote .
,132'

,34'








yxy

yxx
 then we obtain 0''2  yx . In this case 

01132
41det  . It will mean that these relations can be transition formu-

las. Since the affine classification of lines is preserved when replacing the co-
ordinate system, the line in the condition is a parabola. 

 
Solution is found 
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General case of a second-order line (conics) 
 
Let    00222 22222  CBAFEyDxCyBxyAx . 
 

1) First, we note that without loss of generality we can assume that the conditions 0B  and 
CA   are satisfied. Indeed, if 0B , then we can change the signs of all the coefficients in the 

equation of the line. 
 
If CA  , then, by moving to a new orthonormal coordinate system for which 



 oOOeeee ;; 1221
, we obtain the desired relation, since with such a transition, equalities 

xyyx  ;  hold according to the rules for constructing transition formulas. We also note that 

with this replacement,   does not change, since 
 

 CB
BA

AB
BC detdet . 

 

2) The rotation around the origin of coordinates 







,cossin

,sincos




yxy

yxx
, which leads to the 

fact that the term Bxy2  disappears ( 0'B ), is satisfied under the condition: 
 

CA

B

CA

B







2
arctg

2

1
;

2
2tg      or, equivalent to it,     ,0,01tgtg 2 


 B

B

CA
 

 

This gives     22 )(4
2

1

2
' CAB

CA
A 


      and     22 )(4

2

1

2
CAB

CA
C 


 . 
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Task 8.5:  In a rectangular coordinate system, construct a line of the second order 
 

06746212123 22  yxyxyx  . 

 
Solution: 

 

1⁰. Since 0B , but CA   , then we make a change of variables: 







.

,

xy

yx
            (A) 

We get the equation     .06724631212 22  yxyyxx  
 
2⁰. We rotate the coordinate system by an angle   counterclockwise. Moreover, 

.
4

0
   The formulas for this change 








.cossin

,sincos




yxy

yxx
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We find the value   from the condition:     .
3

4

312

622
2tg 








CA

B  

 

Using the formulas:     12tg
2cos

1 2
2

 


     and     



2

2

sin22cos1

cos22cos1




 , 

 

we find that    
5

3
2cos       and     

5

1
sin

5

2
cos








 . That is,    














.
5

2

5

1

,
5

1

5

2

yxy

yxx
     (B) 
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Since 
 

15
2

81144

2

15
)312(64

2

1

2

312
)(4

2

1

2
2222 








 CAB

CA
A

 and 0)(4
2

1

2
22 


 CAB

CA
C ,   

 
then we arrive at an equation of the form: 
 

067
5

50

5

90
15 2  yxx      or     0

15

67

53

5
2

5

3
22  yxx . 
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3⁰. We select the full square:   0
5

9

15

67

53

5
2

5

9

5

3
22  yxx    or 

              0
3

8

53

5
2

5

3
2









 yx .   

From which we obtain:  


















5

4

3

5
2

5

3
2

yx . 

 
 

 We obtain the canonical form of the equation of our line by renaming the axes and shift-

ing the origin of coordinates, that is, by replacing:     














.
5

4

,
5

3

xy

yx
.                       (C) 

 
 This form will look like ,22 xpy   that is, it is a parabola, for which the focal pa-

rameter 
3

5
p . 

 
 
 



ANALYTIC GEOMETRY     Umnov A.E., Umnov E.A. 
Theme 08 Seminars 2024/25 

 

18 

18 

 
 
 

4⁰. We find the final transition formulas by substituting (C) into (B) , and we substitute the 

result of this substitution into (A). We finally obtain   












.2
5

2

5

1

,1
5

1

5

2

yxy

yxx

 

 This means that the final transition matrix 

5

2

5

1
5

1

5

2


S , and the final origin (the 

vertex of the parabola) will be at the point 
2

1


. 

 
5⁰. Considering that the columns of the matrix S  are the coordinate columns of the basis 

vectors 


''',''' 21 ee , and the vector 


'''1e  is the direction vector of the parabola axis, we 
construct a sketch: 
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A graphical solution to the problem is obtained by removing ('erasing') the axes of the ca-
nonical coordinate system  ''',''',''' yxO  from the drawing. 

 
 
 


