Vector Products

1°. Scalar Product

The *scalar product* of nonzero vectors \vec{a} and \vec{b} is a number equal to the product of the lengths of these vectors by the cosine of the angle between them. If at least one of the factors is a zero vector, the scalar product is considered to be zero.

The scalar product is denoted as (\vec{a}, \vec{b}) . Then, by definition,

$$(a,b) = |a| |b| \cos \varphi; 0 \le \varphi \le \pi$$

where ϕ is the angle between the factor vectors.

Properties of the scalar product

- 1°/ $(\vec{a}, \vec{b}) = 0$ with $\vec{a} \neq \vec{o}$ and $\vec{b} \neq \vec{o}$? if \vec{a} and \vec{b} are mutually orthogonal,
- 2°. $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$ (commutativity),
- 3°. $(\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2}, \vec{b}) = \lambda_1 (\vec{a_1}, \vec{b}) + \lambda_2 (\vec{a_2}, \vec{b})$ (linearity)

4°.
$$(\overrightarrow{a}, \overrightarrow{a}) = |\overrightarrow{a}|^2 \ge 0 \quad \forall \overrightarrow{a}; \quad |\overrightarrow{a}| = \sqrt{(\overrightarrow{a}, \overrightarrow{a})},$$

(conditions: (a, a) = 0 and a = o are equivalent),

5°. For
$$\vec{a} \neq \vec{o}$$
 and $\vec{b} \neq \vec{o}$ $\cos \varphi = \frac{(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|}$

2°. Vector product

A vector product of non-collinear vectors \vec{a} and \vec{b} a vector \vec{c} such that

- 1°. $|\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi$, where is the angle between the vectors $\vec{a}, \vec{b}; 0 < \varphi < \pi$.
- 2°. The vector \vec{c} is orthogonal to the vector \vec{a} and the vector \vec{b} .
- 3°. The triple of vectors $\{\vec{a}, \vec{b}, \vec{c}\}$ is right-handed.

In the case where the factors are collinear, the vector product is considered equal to the zero vector.

The vector product is denoted as $[\vec{a}, \vec{b}]$.

Properties of vector product

- 1°. $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ is equal to the area of the parallelogram constructed on vectors \vec{a} and \vec{b} .
- 2°. For nonzero vectors \vec{a} and \vec{b} to be collinear, it is necessary and sufficient that their vector product be equal to the zero vector.
- 3°. $[\vec{a}, \vec{b}] = -[\vec{b}, \vec{a}]$ (anticommutativity)

4°.
$$[\lambda \vec{a}, \vec{b}] = \lambda [\vec{a}, \vec{b}].$$

5°. $[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}]$ (distributivity).

3°. Mixed product

The *mixed* (or *vector-scalar*) product of vectors \vec{a} , \vec{b} and \vec{c} , denoted as $(\vec{a}, \vec{b}, \vec{c})$, is the number $([\vec{a}, \vec{b}], \vec{c})$.

Properties of the mixed product

1°. The absolute value of the mixed product $(\vec{a}, \vec{b}, \vec{c})$ is equal to the volume of the parallelepiped constructed on the vectors \vec{a} , \vec{b} and \vec{c} . The sign of the mixed product is positive if the triple of \vec{a} , \vec{b} , \vec{c} is right-handed, and negative if it is left-handed.

2°.
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{b}, \vec{c}, \vec{a}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{a}, \vec{c}, \vec{b})$$
;

3°.
$$(\lambda \vec{a}, \vec{b}, \vec{c}) = \lambda(\vec{a}, \vec{b}, \vec{c});$$

4°.
$$(\vec{a_1} + \vec{a_2}, \vec{b}, \vec{c}) = (\vec{a_1}, \vec{b}, \vec{c}) + (\vec{a_2}, \vec{b}, \vec{c})$$
,

The mixed product is equal to zero if there is at least one collinear pair among the factors.

4° Double vector product

The *double vector product* of vectors \vec{a} , \vec{b} and \vec{c} is called the vector $[\vec{a} \ \vec{b} \ \vec{c}]]$.

Property of the double vector product

$$\begin{bmatrix} \vec{a}, [\vec{b}, \vec{c}] \end{bmatrix} = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b})$$

Task 4.01 What angle do vectors \vec{a} and \vec{b} form if it is known that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are orthogonal?

Solution

If vectors $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are orthogonal, then their scalar product is zero. Taking into account the commutativity of the scalar product and the conditions $\left| \vec{a} \right| = \left| \vec{b} \right| = 1$ we have $0 = (\vec{a} + 2\vec{b}, 5\vec{a} - 4\vec{b}) = 5(\vec{a}, \vec{a}) - 4(\vec{a}, \vec{b}) + 10(\vec{b}, \vec{a}) - 8(\vec{b}, \vec{b}) =$ $= 5\left| \vec{a} \right|^2 + 6(\vec{a}, \vec{b}) - 8\left| \vec{b} \right|^2 = 6(\vec{a}, \vec{b}) - 3.$ Since $(\vec{a}, \vec{b}) = \frac{1}{2}$ and $\cos \varphi = \frac{1}{2} \implies \varphi = \frac{\pi}{3}.$

Solution is found.

Task .4.02Show that the vector product of a pair of vectors does not change if a vector
collinear to the first factor is added to the second factor.

Solution

Let
$$[\vec{a}, \vec{b}]$$
 and $\vec{c} = \vec{b} + \lambda \vec{a}$ be given. For $[\vec{a}, \vec{c}]$ we have
 $[\vec{a}, \vec{c}] = [\vec{a}, \vec{b} + \lambda \vec{a}] = [\vec{a}, \vec{b}] + \lambda [\vec{a}, \vec{a}] = [\vec{a}, \vec{b}],$
since $[\vec{a}, \vec{a}] = \vec{o}$.

Solution is found

Note that we have also shown that it is impossible to uniquely indicate the second factor for a vector product and one of its factors.

Task 4.03

Find a vector \vec{x} lying in the plane of vectors \vec{a} and \vec{b} if $\begin{cases} \vec{a}, \vec{x} = \alpha, \\ \vec{b}, \vec{x} = \beta, \end{cases}$

and vectors \vec{a} and \vec{b} are non-collinear.

Solution

Vectors \vec{a} and \vec{b} form a basis in their plane. Therefore, vector \vec{x} can be (and uniquely) expanded in this basis

$$\vec{x} = \xi \vec{a} + \eta \vec{b}$$
.

We can find the expansion coefficients from the system of equations

$$\begin{cases} \vec{a}, \vec{a}, \vec{b}, \vec{b}, \vec{a}, \vec{b}, \vec{h}, \vec{h}, \vec{b}, \vec{h}, \vec{$$

Solution is found.

Task 4.04

Find vector
$$\vec{x}$$
 if

$$\begin{cases} \vec{a}, \vec{x} = \alpha, \\ \vec{b}, \vec{x} = \beta, \\ \vec{c}, \vec{x} = \gamma, \end{cases}$$

and the vectors a, b and c are not coplanar.

Solution

The vectors \vec{a} , \vec{b} and \vec{c} are linearly independent, so the vectors $[\vec{a}, \vec{b}]$, $[\vec{b}, \vec{c}]$ and $[\vec{c}, \vec{a}]$ are also linearly independent. Therefore, they form a basis in space and vector \vec{x} can be (and uniquely) expanded in this basis

$$\vec{x} = \xi[\vec{a}, \vec{b}] + \eta[\vec{b}, \vec{c}] + \kappa[\vec{c}, \vec{a}]$$

We can find the expansion coefficients from the system of equations

$$\begin{cases} \vec{a}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{a}, \vec{b}, \vec{c}, \vec{n}) + (\vec{a}, \vec{c}, \vec{a}, \vec{k}) \kappa = \alpha ,\\ \vec{b}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{b}, \vec{b}, \vec{c}, \vec{n}) + (\vec{b}, \vec{c}, \vec{a}, \vec{k}) \kappa = \beta ,\\ \vec{c}, \vec{a}, \vec{b}, \vec{b}, \vec{c} + (\vec{c}, \vec{b}, \vec{c}, \vec{n}) + (\vec{c}, \vec{c}, \vec{a}, \vec{k}) \kappa = \gamma , \end{cases}$$

which, by the properties of the mixed product, is equivalent to the system

$$\begin{cases} \vec{a}, \vec{b}, \vec{c}, \eta = \alpha ,\\ \vec{a}, \vec{b}, \vec{c}, \eta \in \alpha ,\\ \vec{b}, \vec{c}, \vec{a}, \kappa \in \beta ,\\ \vec{c}, \vec{a}, \vec{b}, \xi = \gamma . \end{cases}$$

Solution is found.

Test 4.05

Find all vectors
$$\vec{x}$$
 satisfying the relation
 $[\vec{a}, \vec{x}] + [\vec{x}, \vec{b}] = [\vec{a}, \vec{b}],$
if vectors \vec{a} and \vec{b} are non-collinear.

Решение

We multiply both sides of this equation scalarly by \vec{b} , we get

$$([\vec{a},\vec{x}],\vec{b}) + ([\vec{x},\vec{b}],\vec{b}) = ([\vec{a},\vec{b}],\vec{b})$$
 or $(\vec{a},\vec{x},\vec{b}) + (\vec{x},\vec{b},\vec{b}) = (\vec{a},\vec{b},\vec{b})$.

According to the properties of the mixed product $(\vec{x}, \vec{b}, \vec{b}) = (\vec{a}, \vec{b}, \vec{b}) = 0$, that is $(\vec{a}, \vec{x}, \vec{b}) = 0$. This means that vectors \vec{a}, \vec{x} and \vec{b} are coplanar and linearly dependent

In this case, the vector \vec{x} can be represented as a linear combination of vectors \vec{a} and \vec{b} . Therefore, $\vec{x} = \alpha \vec{a} + \beta \vec{b}$.

Now we find at what values of α and β the vector $\vec{x} = \alpha \vec{a} + \beta \vec{b}$ will satisfy the original relation. Substituting, we get

$$\begin{bmatrix} \vec{a}, \vec{x} \end{bmatrix} + \begin{bmatrix} \vec{x}, \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}, \alpha \ \vec{a} + \beta \ \vec{b} \end{bmatrix} + \begin{bmatrix} \alpha \ \vec{a} + \beta \ \vec{b}, \vec{b} \end{bmatrix} =$$
$$= \alpha \begin{bmatrix} \vec{a}, \vec{a} \end{bmatrix} + \beta \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} + \alpha \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} + \beta \begin{bmatrix} \vec{b}, \vec{b} \end{bmatrix} = (\alpha + \beta) \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix},$$

that is, it is necessary that $\alpha + \beta = 1$. Therefore $\vec{x} = \alpha \vec{a} + (1 - \alpha) \vec{b}$, $\forall \alpha$.

Solution is found

Task 4.06

Find vector \vec{x} from a system of equations $\begin{cases} \vec{a}, \vec{x} \end{bmatrix} = \vec{b}, \\ \vec{c}, \vec{x} \end{bmatrix} = \alpha, \\
subject to \ \vec{c}, \vec{a} \end{pmatrix} \neq 0$

Solution

We multiply both sides of the first equation vectorially from the left by \vec{c} . Then we use the property of double vector product. We get

$$[\vec{c}, [\vec{a}, \vec{x}]] = \vec{a}(\vec{c}, \vec{x}) - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}]$$
$$\alpha \vec{a} - \vec{x}(\vec{c}, \vec{a}) = [\vec{c}, \vec{b}],$$

since due to the second equation of the system there will be $(\vec{c}, \vec{x}) = \alpha$.

Where we finally get

$$\vec{x} = \frac{\vec{\alpha} \cdot \vec{a} - \vec{c} \cdot \vec{b}}{\vec{c} \cdot \vec{a}}.$$

Solution is found.

Vector Products in Coordinates

Expression of Scalar Product in Coordinates

Let a basis $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ and two vectors \vec{a} and \vec{b} with coordinate expansions in this basis:

$$\vec{a} = \xi_1 \vec{g}_1 + \xi_2 \vec{g}_2 + \xi_3 \vec{g}_3 , \qquad \vec{b} = \eta_1 \vec{g}_1 + \eta_2 \vec{g}_2 + \eta_3 \vec{g}_3 .$$

Then by properties 3) and 4) of the scalar product

$$\begin{split} (\vec{a}, \vec{b}) &= \left(\xi_1 \vec{g}_1 + \xi_2 \vec{g}_2 + \xi_3 \vec{g}_3, \ \eta_1 \vec{g}_1 + \eta_2 \vec{g}_2 + \eta_3 \vec{g}_3\right) = \\ &= \xi_1 \eta_1 (\vec{g}_1, \vec{g}_1) + \xi_1 \eta_2 (\vec{g}_1, \vec{g}_2) + \xi_1 \eta_3 (\vec{g}_1, \vec{g}_3) + \\ &+ \xi_2 \eta_1 (\vec{g}_2, \vec{g}_1) + \xi_2 \eta_2 (\vec{g}_2, \vec{g}_2) + \xi_2 \eta_3 (\vec{g}_2, \vec{g}_3) + \\ &+ \xi_3 \eta_1 (\vec{g}_3, \vec{g}_1) + \xi_3 \eta_2 (\vec{g}_3, \vec{g}_2) + \xi_3 \eta_3 (\vec{g}_3, \vec{g}_3) = \\ &= \sum_{j=1}^3 \left(\xi_j \eta_1 (\vec{g}_j, \vec{g}_1) + \xi_j \eta_2 (\vec{g}_j, \vec{g}_2) + \xi_j \eta_3 (\vec{g}_j, \vec{g}_3) \right) = \\ &= \sum_{j=1}^3 \sum_{i=1}^3 \xi_j \eta_i (\vec{g}_j, \vec{g}_i) \,. \end{split}$$

In the case of an *orthonormal* basis, this formula is simplified, since for pairwise scalar products of basis vectors the equality $(\vec{e_j}, \vec{e_i}) = \delta_{ji} = \begin{cases} 1, & j = i, \\ 0, & j \neq i, \end{cases}$ where the number δ_{ji} is called the *Kronecker delta*.

From where for the scalar product of vectors in an orthonormal basis we obtain the formula

$$(\vec{a}, \vec{b}\,) = \xi_1 \eta_1 + \xi_2 \eta_2 + \xi_3 \eta_3$$

from which the following relations follow: $\left| \vec{a} \right| = \sqrt{(\vec{a}, \vec{a})} = \sqrt{\xi_1^2 + \xi_2^2 + \xi_3^2}$, and for the case $\vec{a} \neq \vec{o}$ And $\vec{b} \neq \vec{o}$,

$$\cos\varphi = \frac{(\vec{a}, \vec{b})}{\left|\vec{a}\right| \left|\vec{b}\right|} = \frac{\xi_1 \eta_1 + \xi_2 \eta_2 + \xi_3 \eta_3}{\sqrt{\xi_1^2 + \xi_2^2 + \xi_3^2} \cdot \sqrt{\eta_1^2 + \eta_2^2 + \eta_3^2}}$$

•

Note that this equality in combination with the condition $|\cos \varphi| \leq 1$ leads to the correct $\forall \xi_i, \eta_j \quad i, j = 1...3$ Cauchy – Bunyakovsky inequality:

$$\left|\xi_{1}\eta_{1}+\xi_{2}\eta_{2}+\xi_{3}\eta_{3}\right| \leq \sqrt{\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}} \cdot \sqrt{\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}}$$

- TaskFind the distance between two points in an Cartesian4.07coordinate system with orthonormal basis if the coordinates
of these points are known.
- Solution. Let the following be given: orthonormal coordinate system $\{ O, \vec{e_1}, \vec{e_2}, \vec{e_3} \}$ and two points M_1 and M_2 , whose radii=vectors have coordinate representations of the form

$$\left\| O\vec{M}_1 \right\|_e = \left\| \begin{array}{c} \xi_1 \\ \xi_2 \\ \xi_3 \end{array} \right\| \quad \text{and} \quad \left\| O\vec{M}_2 \right\|_e = \left\| \begin{array}{c} \eta_1 \\ \eta_2 \\ \eta_3 \end{array} \right\|.$$

Then, using the formula for the length of the vector

$$M_1 \tilde{M}_2 = (\xi_1 - \eta_1) \vec{e}_1 + (\xi_2 - \eta_2) \vec{e}_2 + (\xi_3 - \eta_3) \vec{e}_3 ,$$

we obtain in the orthonormal coordinate system

Solution is found.

$$\left| M_{1} \vec{M}_{2} \right| = \sqrt{(\xi_{1} - \eta_{1})^{2} + (\xi_{2} - \eta_{2})^{2} + (\xi_{3} - \eta_{3})^{2}}.$$

Expression of vector product in coordinates

Let right basis $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ be given (i.e. such that vectors $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ form right-handed triple) and let in this basis vectors \vec{a} and \vec{b} have coordinate decompositions

$$\vec{a} = \xi_1 \vec{g}_1 + \xi_2 \vec{g}_2 + \xi_3 \vec{g}_3$$
 and $\vec{b} = \eta_1 \vec{g}_1 + \eta_2 \vec{g}_2 + \eta_3 \vec{g}_3$.

By properties 2) and 3) of the vector product we have

$$\begin{split} [\vec{a}, \vec{b}] &= [\xi_1 \vec{g}_1 + \xi_2 \vec{g}_2 + \xi_3 \vec{g}_3, \ \eta_1 \vec{g}_1 + \eta_2 \vec{g}_2 + \eta_3 \vec{g}_3] = \\ &= \xi_1 \eta_1 [\vec{g}_1, \vec{g}_1] + \xi_1 \eta_2 [\vec{g}_1, \vec{g}_2] + \xi_1 \eta_3 [\vec{g}_1, \vec{g}_3] + \\ &+ \xi_2 \eta_1 [\vec{g}_2, \vec{g}_1] + \xi_2 \eta_2 [\vec{g}_2, \vec{g}_2] + \xi_2 \eta_3 [\vec{g}_2, \vec{g}_3] + \\ &+ \xi_3 \eta_1 [\vec{g}_3, \vec{g}_1] + \xi_3 \eta_2 [\vec{g}_3, \vec{g}_2] + \xi_3 \eta_3 [\vec{g}_3, \vec{g}_3] = \\ &= \sum_{j=1}^3 \sum_{i=1}^3 \xi_j \eta_i [\vec{g}_j, \vec{g}_i] \,. \end{split}$$

If we introduce the notation

$$\vec{f_1} = [\vec{g_2}, \vec{g_3}], \quad \vec{f_2} = [\vec{g_3}, \vec{g_1}], \quad \vec{f_3} = [\vec{g_1}, \vec{g_2}],$$

then we get an easy-to-remember formula

$$\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} = (\xi_2 \eta_3 - \xi_3 \eta_2) \vec{f_1} - (\xi_1 \eta_3 - \xi_3 \eta_1) \vec{f_2} + (\xi_1 \eta_2 - \xi_2 \eta_1) \vec{f_3} = = \vec{f_1} \det \left\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| - \vec{f_2} \det \left\| \begin{array}{cc} \xi_1 & \xi_3 \\ \eta_1 & \eta_3 \end{array} \right\| + \vec{f_3} \det \left\| \begin{array}{cc} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{array} \right\| = = \det \left\| \begin{array}{cc} \vec{f_1} & \vec{f_2} & \vec{f_3} \\ \xi_1 & \xi_2 & \xi_3 \\ \eta_1 & \eta_2 & \eta_3 \end{array} \right\|.$$

The case of an orthonormal basis

Let the original basis $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ orthonormal, forming a right triple of vectors, then by the definition of the vector product

$$\vec{f_1} = \vec{e_1} \,, \quad \vec{f_2} = \vec{e_2} \,, \quad \vec{f_3} = \vec{e_3} \,.$$

Then the formula for the vector product of vectors in the *right orthonormal* basis will be noticeably simplified:

$$[\vec{a}, \vec{b}] = \det \left\| \begin{array}{ccc} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \xi_1 & \xi_2 & \xi_3 \\ \eta_1 & \eta_2 & \eta_3 \end{array} \right\| \, .$$

The case of an orthonormal basis

The above formulas have useful consequences.

Corollary For vectors \vec{a} and \vec{b} to be collinear, it is necessary and sufficient that in any basis

$$\det \left\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| = \det \left\| \begin{array}{cc} \xi_1 & \xi_3 \\ \eta_1 & \eta_3 \end{array} \right\| = \det \left\| \begin{array}{cc} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{array} \right\| = 0 \,,$$

or (in the case of
$$\vec{b} \neq \vec{o}$$
) $\frac{\xi_1}{\eta_1} = \frac{\xi_2}{\eta_2} = \frac{\xi_3}{\eta_3}$.

Corollary In an orthonormal basis, the area of a parallelogram constructed on the vectors \vec{a} and \vec{b} , is

$$S = \sqrt{\det^2} \left\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| + \det^2 \left\| \begin{array}{cc} \xi_1 & \xi_3 \\ \eta_1 & \eta_3 \end{array} \right\| + \det^2 \left\| \begin{array}{cc} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{array} \right\|,$$

and for the case on the plane $S = \left| \det \right\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| \left|.$

Expression of a mixed product in coordinates

Let a *right* basis be given $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ and let in this basis the vectors \vec{a}, \vec{b} and \vec{c} have coordinate decompositions

$$\vec{a} = \xi_1 \vec{g}_1 + \xi_2 \vec{g}_2 + \xi_3 \vec{g}_3$$
, $\vec{b} = \eta_1 \vec{g}_1 + \eta_2 \vec{g}_2 + \eta_3 \vec{g}_3$

and accordingly $\vec{c} = \kappa_1 \vec{g}_1 + \kappa_2 \vec{g}_2 + \kappa_3 \vec{g}_3$.

It was shown earlier that the vector product in coordinates can be represented as

$$[\vec{a}, \vec{b}] = \vec{f_1} \det \left\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| - \vec{f_2} \det \left\| \begin{array}{cc} \xi_1 & \xi_3 \\ \eta_1 & \eta_3 \end{array} \right\| + \vec{f_3} \det \left\| \begin{array}{cc} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{array} \right\|,$$

where

$$\vec{f_1} = [\vec{g_2}, \vec{g_3}], \quad \vec{f_2} = [\vec{g_3}, \vec{g_1}], \quad \vec{f_3} = [\vec{g_1}, \vec{g_2}].$$

Using the definition of a mixed product, it is easy to verify that the last equalities imply the relations

$$(\vec{g}_k, \vec{f}_j) = \begin{cases} (\vec{g}_1, \vec{g}_2, \vec{g}_3) & \text{for} \quad k = j, \\ 0 & \text{for} \quad k \neq j \end{cases} \quad \forall k, j = 1, 2, 3.$$

Then we get for the mixed product will be

$$\begin{aligned} (\vec{a}, \vec{b}, \vec{c}) &= ([\vec{a}, \vec{b}], \vec{c}) = \left(\kappa_1 \det \left\| \begin{array}{cc} \xi_2 & \xi_3 \\ \eta_2 & \eta_3 \end{array} \right\| - \\ &-\kappa_2 \det \left\| \begin{array}{cc} \xi_1 & \xi_3 \\ \eta_1 & \eta_3 \end{array} \right\| + \kappa_3 \det \left\| \begin{array}{cc} \xi_1 & \xi_2 \\ \eta_1 & \eta_2 \end{array} \right\| \right) (\vec{g}_1, \vec{g}_2, \vec{g}_3) = \\ &= \det \left\| \begin{array}{cc} \xi_1 & \xi_2 & \xi_3 \\ \eta_1 & \eta_2 & \eta_3 \\ \kappa_1 & \kappa_2 & \kappa_3 \end{array} \right\| (\vec{g}_1, \vec{g}_2, \vec{g}_3) \,. \end{aligned}$$

Indeed, the expression in large parentheses is the expansion of the determinant of the 3rd order by its last line.

Notes: 1) In the case of a right orthonormal basis we have $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = 1$. Therefore, in such a basis

$$(\vec{a}, \vec{b}, \vec{c}) = \det \begin{vmatrix} \xi_1 & \xi_2 & \xi_3 \\ \eta_1 & \eta_2 & \eta_3 \\ \kappa_1 & \kappa_2 & \kappa_3 \end{vmatrix}$$

2) For a triple of vectors
$$\left\{\vec{f_1}, \vec{f_2}, \vec{f_3}\right\}$$
 is true

Corollary The triple of vectors $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ forms a basis (called *reciprocal* to the basis $\{\vec{g_1}, \vec{g_2}, \vec{g_3}\}$).