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Basis. Vector coordinates in the basis 
 
 
Definition 
 

A basis on a line is any nonzero vector belonging to this line. 

 
A basis on a plane is any ordered pair of linearly independent vectors belonging 
to this plane. 

 A basis in space is any ordered triple of linearly independent vectors. 
 

 

Definition 
 

A basis is called orthogonal if the vectors forming it are pairwise orthogonal 
(mutually perpendicular). 
 

 

Definition 
 

An orthogonal basis is called orthonormal if the vectors forming it have unit 
length. 
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Theorem 

 

Let a basis },,{ 321



ggg , be given, then any vector


x  in space can be repre-

sented, and uniquely, in the form 


 332211 gggx  , 

where 321 ,,   are some numbers. 

 

 
 

Definition 
 

The numbers 321 ,,   are the coefficients in the vector expansion 


 332211 gggx . They are called the coordinates (or components) of the 

vector 


x  in the basis  },,{ 321



ggg . These numbers are usually written in the form 

of a column 
g

x



3

2

1





, which is called the coordinate column or coordinate rep-

resentation of the vector. 
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Vector operations in coordinate representation 
 
 

The rules for operations with vectors in coordinate form coincide with the rules for the correspond-
ing operations with matrices. 

 
The following holds 
 

Theorem 

 
In coordinate representation, operations with vectors are performed as follows: 
 

 

 1.  Equality of 

       vectors  

Two vectors 

         


 332211 gggx  

and   


 332211 gggy  

 
are equal if and only if their coordinate representations are 
equal: 

gg

yx


  or   












33

22

11

. 
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 2.  Vector 
addition  

The coordinate representation of the sum of two vectors 

         


 332211 gggx  

 and   


 332211 gggy   

is equal to the sum of the coordinate representations of the terms 

ggg

yxyx


 . 

 
 3.  Vector multi-

plication (by a 
numbe ) 

The coordinate representation of the product of a number   and 
a vector 



 332211 gggx  

  is equal to the product of a number   and the coordinate repre-

sentation of a vector 


x : 

.
gg

xx



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Proof. 

 

Let us consider the rule of vector addition in coordinate form. 
 

.

)()()(

)()(

3

2

1

3

2

1

33

22

11

333222111

332211332211

gg

g

gg

yx

ggg

ggggggyx


































 

 
The theorem is proved. 

 
 

 

 

Corollary 
 

 The coordinate representation of a linear combination 


 yx   is the same 

linear combination of the coordinate representations of vectors 


x  and 


y : 
 

 

3

2

1

3

2

1

33

22

11















. 
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Let us now consider the question: how the conditions of linear dependence and independence of vec-

tors are written in the coordinate representation? 
 
 

 

Theorem 

 

In order for two vectors 


x  and 


y  on the plane to be linearly dependent, it is 

necessary and sufficient that their coordinate representations  
2

1






g

x  and 

2

1






g

y   satisfy the condition 

.0det
22

11 



 

 
 

Theorem 

 
In order for three vectors in space  },,{



zyx  with coordinate representations 

3

2

1








g

x  ,       

3

2

1








g

y        and       

3

2

1








g

z  

to be linearly dependent, it is necessary and sufficient that their coordinates 
satisfy the condition 

.0det

333

222

111





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Task  1) Will the columns be linearly dependent 

     ?

0

2

2

,

1

1

1

,

2

1

3

  

(Ans. No) 
 
 2) What values of the parameter a  will the columns be linearly de-
pendent 

     ?2

2

,

1

1

1

,

2

1

3

a

  

 
(Ans. At 1a ) 
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Cartesian coordinate system 

 

 
 

Definition 
. 

The set of the basis .},,{ 321



ggg  and the point O  in which the origins of all basis 

vectors are placed is called the general Cartesian coordinate system and is denoted by 

.},,,{ 321



gggO  

 
Definition 

 

The coordinate system },,,{ 321



eeeO  generated by the orthonormal basis is called the 

normal rectangular (or orthonormal) coordinate system. 

 
 
 

If the coordinate system 


},,,{ 321 gggO  is given, then an arbitrary point M  in space can be put into 

one-to-one correspondence with the vector 


r , the origin of which is at the point O  and the end is at the 
point M . 

 
 

Definition 

 

The vector 


 OMr  is called the position vector of the point M  in the coordinate 

system .},,,{ 321



gggO  

 
 

Definition 

 

The coordinates of the position vector of the point M  are called the coordinates of 

the point M  in the coordinate system .},,,{ 321



gggO  
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Changing coordinates when replacing the basis and the origin 
 

Let two Cartesian coordinate systems be given: “old” 


},,,{ 321 gggO  and “new” 

 },,,{ 321 gggO . Let 

us express the vectors of the “new” basis, as well as the vector 

OO  through the vectors of the “old” 

basis. Due to the properties of the basis, this can always be done in a unique way: 

.

,

,

,

332211

3332231133

3322221122

3312211111

















gggOO

gggg

gggg

gggg

                      (1) 

 

Then the following holds: 
 
 

Theorem 
 

The coordinates of an arbitrary point in the “old” coordinate system are related to 
its coordinates in the “new” by the relations 

 

               

.

,

,

33332321313

23232221212

13132121111





               (2) 

 
 

Definition 
 

Formulas (2) are called formulas for the transition from a coordinate system 


},,,{ 321 gggO  to a coordinate system 

 },,,{ 321 gggO . 
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Definition 
 

The matrix 

333231

232221

131211





S  is called the basis


},,{ 321 ggg -to-basis 


 },,{ 321 ggg  transition matrix. 

 
 

 

Theorem 
 

 
 

For a transition matrix 
 

.0det

333231

232221

131211





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Task  Write the formulas for the direct and 

inverse transition for two Cartesian 
coordinate systems shown in Fig. 1. 

 
                    O  

 

         

3g                               



2g  

                   


1g                              B  

 

 
                                                    M  

  O                            K              

2g  

                    

1g                            A 

                                                


3g  

 
Fig. 1. 

 
 
Here OO'AB is a regular triangular pyramid, point M is the midpoint of AB and OK is the height of the 
pyramid. 
 



ANALYTIC GEOMETRY     Umnov A.E., Umnov E.A. 
Theme 02 Seminars 2024/25 

12 

 
 
 

 

Solution 
 

Let us find the formulas for the transition from the coordinate system },,,{ 321



gggO  to 

 },,,{ 321 gggO . We have from Fig. 1. 



 1gOO . And for the "new" basis vectors 

 

.
3

1

3

1

3

1

3

2
2

3212113

32
12

311















gggggKOgg

gg
gg

ggg

 

 
Having written down in columns the found coordinate decompositions of the "new" basis 
vectors by the "old" ones, we obtain the transition matrix 

3

1

2

1

3

1

2

1

3

1

1

0

11







S , 

whose determinant is equal to 
2

1
. Now we write down the formulas for the direct transition 




















3213

322

3211

3

1

2

1
3

1

2

1

1
3

1

. 
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Now let's find the formulas for the inverse transition. To do this, we first express the vectors 
of the "old" basis through the vectors of the "new". 
 

.
3

2
3

4
)()(

3

2

321113

3211232

321













gggggg

ggggggKMMBOMg

ggg

 
 

Then the matrix of the inverse transition will have the form 

111

110

3

2

3

4

3

2





 T , 

and 2det T . Finally, the formulas for the inverse transition will be 















1
3

2

3

2

3

4

3

2

3213

3212

321

 

since 

 321 3

2
gggOO . 

 
Solution is found 
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Transition formulas between orthonormal coordinate systems on a plane 
 

Let us consider two orthonormal coordinate systems },,{ 21



eeO  and },,{ 21


 eeO . We obtain the transi-

tion formulas for the case shown in the figure. From the geometrically obvious relations 
 




sincos 211 eee    and   


cossin 212 eee  

we obtain the transition matrix:               



cossin

sincos
S ,  

and if 
2

1






OO ,  then the “old” coordinates will be related to the “new” ones as 








.cossin

,sincos

2212

1211
 

\ 
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In the first case, both coordinate systems can be combined by successively performing a parallel transfer 

of the “old” system by a vector 

OO  and a rotation by an angle  around a point .O  

 

Sometimes, after combining the vectors 


1e  and 

1e , it will also be necessary to reflect the vector 



2e  
symmetrically with respect to a straight line passing through the combined vectors. The transition for-
mulas in this case will have the form 

 








.cossin

,sincos

2212

1211
 

 
 
 


